These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 12729738)

  • 1. Exploration of the transition state for tertiary structure formation between an RNA helix and a large structured RNA.
    Bartley LE; Zhuang X; Das R; Chu S; Herschlag D
    J Mol Biol; 2003 May; 328(5):1011-26. PubMed ID: 12729738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a local folding event of the Tetrahymena group I ribozyme: effects of oligonucleotide substrate length, pH, and temperature on the two substrate binding steps.
    Narlikar GJ; Bartley LE; Khosla M; Herschlag D
    Biochemistry; 1999 Oct; 38(43):14192-204. PubMed ID: 10571993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme.
    Strobel SA; Cech TR
    Biochemistry; 1993 Dec; 32(49):13593-604. PubMed ID: 7504953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone.
    Tijerina P; Bhaskaran H; Russell R
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16698-703. PubMed ID: 17075070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway.
    Russell R; Herschlag D
    J Mol Biol; 2001 May; 308(5):839-51. PubMed ID: 11352576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in the Tetrahymena ribozyme internal guide sequence: effects on docking of the P1 helix into the catalytic core and correlation with catalytic activity.
    Campbell TB; Cech TR
    Biochemistry; 1996 Sep; 35(35):11493-502. PubMed ID: 8784205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New pathways in folding of the Tetrahymena group I RNA enzyme.
    Russell R; Herschlag D
    J Mol Biol; 1999 Sep; 291(5):1155-67. PubMed ID: 10518951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of a local tertiary folding transition in the context of a globally folded RNA.
    Narlikar GJ; Herschlag D
    Nat Struct Biol; 1996 Aug; 3(8):701-10. PubMed ID: 8756329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme.
    Herschlag D
    Biochemistry; 1992 Feb; 31(5):1386-99. PubMed ID: 1736996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbed folding kinetics of circularly permuted RNAs with altered topology.
    Heilman-Miller SL; Woodson SA
    J Mol Biol; 2003 Apr; 328(2):385-94. PubMed ID: 12691747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An early transition state for folding of the P4-P6 RNA domain.
    Silverman SK; Cech TR
    RNA; 2001 Feb; 7(2):161-6. PubMed ID: 11233973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of crystal structure interactions and thermodynamics for stabilizing mutations in the Tetrahymena ribozyme.
    Guo F; Gooding AR; Cech TR
    RNA; 2006 Mar; 12(3):387-95. PubMed ID: 16431981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single-molecule study of RNA catalysis and folding.
    Zhuang X; Bartley LE; Babcock HP; Russell R; Ha T; Herschlag D; Chu S
    Science; 2000 Jun; 288(5473):2048-51. PubMed ID: 10856219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for a single-stranded junction in RNA binding and specificity by the Tetrahymena group I ribozyme.
    Shi X; Solomatin SV; Herschlag D
    J Am Chem Soc; 2012 Feb; 134(4):1910-3. PubMed ID: 22220837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitating tertiary binding energies of 2' OH groups on the P1 duplex of the Tetrahymena ribozyme: intrinsic binding energy in an RNA enzyme.
    Narlikar GJ; Khosla M; Usman N; Herschlag D
    Biochemistry; 1997 Mar; 36(9):2465-77. PubMed ID: 9054551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein roles in group I intron RNA folding: the tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics.
    Chadee AB; Bhaskaran H; Russell R
    J Mol Biol; 2010 Jan; 395(3):656-70. PubMed ID: 19913030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deteriorated triple-helical scaffold accelerates formation of the Tetrahymena ribozyme active structure.
    Ohki Y; Ikawa Y; Shiraishi H; Inoue T
    FEBS Lett; 2001 Mar; 493(2-3):95-100. PubMed ID: 11287003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the P7 region within the catalytic core of the Tetrahymena ribozyme by employing in vitro selection.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Symp Ser; 2000; (44):197-8. PubMed ID: 12903336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximizing RNA folding rates: a balancing act.
    Thirumalai D; Woodson SA
    RNA; 2000 Jun; 6(6):790-4. PubMed ID: 10864039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.