These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 12729961)

  • 1. Evidence for multiple mechanisms of kappa opioid tolerance in mesencephalic cultures.
    Sun XG; Dalman FC
    Brain Res; 2003 May; 973(1):122-30. PubMed ID: 12729961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. kappa-Opioid tolerance and dependence in cultures of dopaminergic midbrain neurons.
    Dalman FC; O'Malley KL
    J Neurosci; 1999 Jul; 19(14):5750-7. PubMed ID: 10407016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucocorticoid and mineralocorticoid receptors differentially modulate cultured dopaminergic neurons of rat ventral mesencephalon.
    Ronken E; Mulder AH; Schoffelmeer AN
    Eur J Pharmacol; 1994 Sep; 263(1-2):149-56. PubMed ID: 7821346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of agonist-induced desensitization of the cloned mouse kappa opioid receptor.
    Raynor K; Kong H; Hines J; Kong G; Benovic J; Yasuda K; Bell GI; Reisine T
    J Pharmacol Exp Ther; 1994 Sep; 270(3):1381-6. PubMed ID: 7932192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic activation of mu- and kappa-opioid receptors in cultured catecholaminergic neurons from rat brain causes neuronal supersensitivity without receptor desensitization.
    Ronken E; Mulder AH; Schoffelmeer AN
    J Pharmacol Exp Ther; 1994 Feb; 268(2):595-9. PubMed ID: 8113970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. kappa-Opioid inhibition of [3H]dopamine release from rat ventral mesencephalic dissociated cell cultures.
    Smith JA; Loughlin SE; Leslie FM
    Mol Pharmacol; 1992 Oct; 42(4):575-83. PubMed ID: 1359395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The kappa opioid receptor expressed on the mouse R1.1 thymoma cell line down-regulates without desensitizing during chronic opioid exposure.
    Joseph DB; Bidlack JM
    J Pharmacol Exp Ther; 1995 Mar; 272(3):970-6. PubMed ID: 7891351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noribogaine is a G-protein biased κ-opioid receptor agonist.
    Maillet EL; Milon N; Heghinian MD; Fishback J; Schürer SC; Garamszegi N; Mash DC
    Neuropharmacology; 2015 Dec; 99():675-88. PubMed ID: 26302653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic AMP, but not basic FGF, increases the in vitro survival of mesencephalic dopaminergic neurons and protects them from MPP(+)-induced degeneration.
    Hartikka J; Staufenbiel M; Lübbert H
    J Neurosci Res; 1992 Jun; 32(2):190-201. PubMed ID: 1357186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opioid peptide receptor studies. 10. Nor-BNI differentially inhibits kappa receptor agonist-induced G-protein activation in the guinea pig caudate: further evidence of kappa receptor heterogeneity.
    Heyliger SO; Jackson C; Rice KC; Rothman RB
    Synapse; 1999 Dec; 34(4):256-65. PubMed ID: 10529720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of protein kinase C-epsilon in the development of kappa-opioid receptor tolerance to U50,488H in rat ventricular myocytes.
    Zhou JJ; Bian JS; Pei JM; Wu S; Li HY; Wong TM
    Br J Pharmacol; 2002 Apr; 135(7):1675-84. PubMed ID: 11934807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonergic modulation of persistent sodium currents and membrane excitability via cyclic AMP-protein kinase A cascade in mesencephalic V neurons.
    Tanaka S; Chandler SH
    J Neurosci Res; 2006 May; 83(7):1362-72. PubMed ID: 16557576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kappa opioid inhibition of somatodendritic dopamine inhibitory postsynaptic currents.
    Ford CP; Beckstead MJ; Williams JT
    J Neurophysiol; 2007 Jan; 97(1):883-91. PubMed ID: 17122312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kappa-opioid receptor agonists increase locomotor activity in the monoamine-depleted rat model of parkinsonism.
    Hughes NR; McKnight AT; Woodruff GN; Hill MP; Crossman AR; Brotchie JM
    Mov Disord; 1998 Mar; 13(2):228-33. PubMed ID: 9539334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kappa opioid receptor tolerance in the guinea pig hippocampus.
    Jin W; Terman GW; Chavkin C
    J Pharmacol Exp Ther; 1997 Apr; 281(1):123-8. PubMed ID: 9103488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-arrhythmic effect of kappa-opioid receptor stimulation in the perfused rat heart: involvement of a cAMP-dependent pathway.
    Yu XC; Wang HX; Pei JM; Wong TM
    J Mol Cell Cardiol; 1999 Oct; 31(10):1809-19. PubMed ID: 10525419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of kappa opioid receptor agonists on attention as assessed by a 5-choice serial reaction time task in rats.
    Shannon HE; Eberle EL; Mitch CH; McKinzie DL; Statnick MA
    Neuropharmacology; 2007 Dec; 53(8):930-41. PubMed ID: 17959202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glial growth is regulated by agonists selective for multiple opioid receptor types in vitro.
    Stiene-Martin A; Hauser KF
    J Neurosci Res; 1991 Aug; 29(4):538-48. PubMed ID: 1665190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic AMP regulates the calcium transients released from IP(3)-sensitive stores by activation of rat kappa-opioid receptors expressed in CHO cells.
    Ikeda M; Nelson CS; Shinagawa H; Shinoe T; Sugiyama T; Allen CN; Grandy DK; Yoshioka T
    Cell Calcium; 2001 Jan; 29(1):39-48. PubMed ID: 11133354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro/kappa opioid interactions in rhesus monkeys: implications for analgesia and abuse liability.
    Negus SS; Schrode K; Stevenson GW
    Exp Clin Psychopharmacol; 2008 Oct; 16(5):386-99. PubMed ID: 18837635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.