These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12730006)

  • 1. A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules.
    Liu Y; Xu H; Yang SF; Tay JH
    J Biotechnol; 2003 May; 102(3):233-9. PubMed ID: 12730006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic granules: a novel zinc biosorbent.
    Liu Y; Yang SF; Tan SF; Lin YM; Tay JH
    Lett Appl Microbiol; 2002; 35(6):548-51. PubMed ID: 12460442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosorption of rare earth metal ion on aerobic granules.
    Zhang LL; Feng XX; Xu F; Xu S; Cai WM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(4):857-67. PubMed ID: 15792304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive biosorption of zinc(II) and cobalt(II) in single- and binary-metal systems by aerobic granules.
    Sun XF; Wang SG; Liu XW; Gong WX; Bao N; Gao BY
    J Colloid Interface Sci; 2008 Aug; 324(1-2):1-8. PubMed ID: 18495142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn.
    Cutillas-Barreiro L; Paradelo R; Igrexas-Soto A; Núñez-Delgado A; Fernández-Sanjurjo MJ; Álvarez-Rodriguez E; Garrote G; Nóvoa-Muñoz JC; Arias-Estévez M
    Ecotoxicol Environ Saf; 2016 Sep; 131():118-26. PubMed ID: 27232204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of temperature on the Pb2+ biosorption with aerobic granules].
    Yao L; Ye ZF; Wang ZY; Ni JR
    Huan Jing Ke Xue; 2009 Jun; 30(6):1733-7. PubMed ID: 19662860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotechnological potential of Microcystis sp. in Cu, Zn and Cd biosorption from single and multimetallic systems.
    Pradhan S; Rai LC
    Biometals; 2001 Mar; 14(1):67-74. PubMed ID: 11368277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Advances: granulation mechanism, characteristics and application of aerobic sludge granules].
    Peng YZ; Wu L; Ma Y; Wang SY; Li LY
    Huan Jing Ke Xue; 2010 Feb; 31(2):273-81. PubMed ID: 20391690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Cr3+ from aqueous solution by biosorption with aerobic granules.
    Yao L; Ye ZF; Tong MP; Lai P; Ni JR
    J Hazard Mater; 2009 Jun; 165(1-3):250-5. PubMed ID: 19013022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19.
    Pan R; Cao L; Zhang R
    J Hazard Mater; 2009 Nov; 171(1-3):761-6. PubMed ID: 19592158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw.
    Dang VB; Doan HD; Dang-Vu T; Lohi A
    Bioresour Technol; 2009 Jan; 100(1):211-9. PubMed ID: 18599289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of native and protonated grapefruit biomass (Citrus paradisi L.) for cadmium(II) biosorption: equilibrium and kinetic modelling.
    Bayo J; Esteban G; Castillo J
    Environ Technol; 2012; 33(7-9):761-72. PubMed ID: 22720399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass.
    Hawari AH; Mulligan CN
    Bioresour Technol; 2006 Mar; 97(4):692-700. PubMed ID: 15935654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosorption of cadmium (II) and copper (II) by pretreated biomass of marine alga Gracilaria fisheri.
    Chaisuksant Y
    Environ Technol; 2003 Dec; 24(12):1501-8. PubMed ID: 14977146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal and recovery of copper (II) ions by bacterial biosorption.
    Wong MF; Chua H; Lo W; Leung CK; Yu PH
    Appl Biochem Biotechnol; 2001; 91-93():447-57. PubMed ID: 11963873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of dissolved copper(II) and zinc(II) by aerobic granular sludge.
    Xu H; Tay JH; Foo SK; Yang SF; Liu Y
    Water Sci Technol; 2004; 50(9):155-60. PubMed ID: 15581007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent.
    Suzuki Y; Kametani T; Maruyama T
    Water Res; 2005 May; 39(9):1803-8. PubMed ID: 15899278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization studies.
    Puranik PR; Paknikar KM
    Biotechnol Prog; 1999; 15(2):228-37. PubMed ID: 10194398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption of high-concentration Cu (II) by periphytic biofilms and the development of a fiber periphyton bioreactor (FPBR).
    Liu J; Wang F; Wu W; Wan J; Yang J; Xiang S; Wu Y
    Bioresour Technol; 2018 Jan; 248(Pt B):127-134. PubMed ID: 28634126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.