These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12730148)

  • 1. Validity of fluorescent microspheres method for bone blood flow measurement during intentional arterial hypotension.
    Anetzberger H; Thein E; Becker M; Walli AK; Messmer K
    J Appl Physiol (1985); 2003 Sep; 95(3):1153-8. PubMed ID: 12730148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent microsphere method is suitable for chronic bone blood flow measurement: a long-term study after meniscectomy in rabbits.
    Anetzberger H; Thein E; Löffler G; Messmer K
    J Appl Physiol (1985); 2004 May; 96(5):1928-36. PubMed ID: 14698991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of an autoregulatory mechanism of regional bone blood flow at hypotension.
    Vogt S; Venjakob AJ; Stöckl K; Tischer T; Jost PJ; Imhoff AB; Thein E; Anetzberger H
    Arch Orthop Trauma Surg; 2013 Sep; 133(9):1233-41. PubMed ID: 23832129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of regional bone blood flow by means of fluorescent microspheres using an automated sample-processing procedure.
    Anetzberger H; Thein E; Walli AK; Messmer K
    Eur Surg Res; 2003; 35(4):337-45. PubMed ID: 12802094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent vs. radioactive microsphere measurement of regional myocardial blood flow.
    Chien GL; Anselone CG; Davis RF; Van Winkle DM
    Cardiovasc Res; 1995 Sep; 30(3):405-12. PubMed ID: 7585832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent microspheres are reliable for serial bone blood flow measurements.
    Anetzberger H; Thein E; Maier M; Birkenmaier C; Messmer K
    Clin Orthop Relat Res; 2004 Oct; (427):241-8. PubMed ID: 15552164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microspheres accurately predict regional bone blood flow.
    Anetzberger H; Thein E; Becker M; Zwissler B; Messmer K
    Clin Orthop Relat Res; 2004 Jul; (424):253-65. PubMed ID: 15241173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local cooling reduces regional bone blood flow.
    Venjakob AJ; Vogt S; Stöckl K; Tischer T; Jost PJ; Thein E; Imhoff AB; Anetzberger H
    J Orthop Res; 2013 Nov; 31(11):1820-7. PubMed ID: 23813837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opioids and the prostanoid system in the control of cerebral blood flow in hypotensive piglets.
    Armstead WM; Mirro R; Busija DW; Leffler CW
    J Cereb Blood Flow Metab; 1991 May; 11(3):380-7. PubMed ID: 1901869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct assessment and distribution of regional portal blood flow in the pig by means of fluorescent microspheres.
    Thein E; Becker M; Anetzberger H; Hammer C; Messmer K
    J Appl Physiol (1985); 2003 Nov; 95(5):1808-16. PubMed ID: 12819221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systemic and regional hemodynamics assessment in rats with fluorescent microspheres.
    Gervais M; Démolis P; Domergue V; Lesage M; Richer C; Giudicelli JF
    J Cardiovasc Pharmacol; 1999 Mar; 33(3):425-32. PubMed ID: 10069679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronary reactive hyperaemia and arterial pressure in anaesthetized goats.
    Fernández N; Monge L; García-Villalón AL; Diéguez G
    Exp Physiol; 2006 Sep; 91(5):915-23. PubMed ID: 16777933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent microspheres are superior to radioactive microspheres in chronic blood flow measurements.
    Van Oosterhout MF; Prinzen FW; Sakurada S; Glenny RW; Hales JR
    Am J Physiol; 1998 Jul; 275(1):H110-5. PubMed ID: 9688902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs.
    Yannopoulos D; Aufderheide TP; McKnite S; Kotsifas K; Charris R; Nadkarni V; Lurie KG
    Resuscitation; 2006 Jun; 69(3):487-94. PubMed ID: 16678959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Canine bone blood flow estimated with microspheres.
    Li G; Bronk JT; Kelly PJ
    J Orthop Res; 1989; 7(1):61-7. PubMed ID: 2908913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changed systemic and cerebral hemodynamics and oxygen supply due to gradual hemorrhagic hypotension induced by an external PID-controller in newborn swine.
    Bauer R; Hoyer D; Walter B; Gaser E; Kluge H; Zwiener U
    Exp Toxicol Pathol; 1997 Dec; 49(6):469-76. PubMed ID: 9495648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of cardiac output and organ blood flow in rats using 99Tcm labelled microspheres.
    Hafström L; Persson B; Sundqvist K
    Acta Physiol Scand; 1979 Jun; 106(2):123-8. PubMed ID: 388984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained increase in arterial blood pressure and vascular resistance induced by infusion of arachidonic acid in rats.
    Kirkebø A; Haugan A; Mesteig K
    Acta Physiol Scand; 2000 Sep; 170(1):1-9. PubMed ID: 10971217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional hemodynamics during postexercise hypotension. I. Splanchnic and renal circulations.
    Pricher MP; Holowatz LA; Williams JT; Lockwood JM; Halliwill JR
    J Appl Physiol (1985); 2004 Dec; 97(6):2065-70. PubMed ID: 15310744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between inert gas wash-out and radioactive tracer microspheres in measurement of bone blood flow: effect of decreased arterial supply and venous congestion on bone blood flow in an animal model.
    Kiaer T; Dahl B; Lausten GS
    J Orthop Res; 1993 Jan; 11(1):28-35. PubMed ID: 8380853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.