These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12730148)

  • 41. Hypercapnia potentiates renal vasoconstriction during hemorrhagic hypotension in awake rabbits.
    Busija DW
    Am J Physiol; 1984 May; 246(5 Pt 2):H671-4. PubMed ID: 6720978
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of increased intraabdominal pressure on cardiac output and tissue blood flow assessed by color-labeled microspheres in the pig.
    Yavuz Y; Rønning K; Lyng O; Mårvik R; Grønbech JE
    Surg Endosc; 2001 Feb; 15(2):149-55. PubMed ID: 11285958
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Haemodynamic responses to hypotensive haemorrhage in conscious sheep with emphasis on renal and femoral blood flow.
    Gunnarsson U; Hjelmqvist H; Rundgren M
    Exp Physiol; 1994 Nov; 79(6):957-65. PubMed ID: 7873163
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Partial pressures of oxygen and carbon dioxide in bone and their correlation with bone-blood flow: effect of decreased arterial supply and venous congestion on intraosseous oxygen and carbon dioxide in an animal model.
    Kiaer T; Dahl B; Lausten G
    J Orthop Res; 1992 Nov; 10(6):807-12. PubMed ID: 1403294
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neurotensin-induced increase in intestinal blood flow in the anesthetized rat.
    Onarheim J; Helle KB; Jørgensen G
    Acta Physiol Scand; 1982 Apr; 114(4):505-11. PubMed ID: 6182752
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Measurement of regional bronchial arterial blood flow and bronchovascular resistance in dogs.
    Baile EM; Nelems JM; Schulzer M; Paré PD
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Oct; 53(4):1044-9. PubMed ID: 7153115
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fetal sheep adrenal blood flow responses to hypoxemia after splanchnicotomy using fluorescent microspheres.
    Buchwalder LF; Lin M; McDonald TJ; Nathanielsz PW
    J Appl Physiol (1985); 1998 Jan; 84(1):82-9. PubMed ID: 9451621
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Validation of fluorescent-labeled microspheres for measurement of regional organ perfusion.
    Glenny RW; Bernard S; Brinkley M
    J Appl Physiol (1985); 1993 May; 74(5):2585-97. PubMed ID: 8335595
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hemodynamic disturbances in the rat as a function of the number of microspheres injected.
    Stanek KA; Smith TL; Murphy WR; Coleman TG
    Am J Physiol; 1983 Dec; 245(6):H920-3. PubMed ID: 6660312
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Observations on long bone medullary pressures in relation to arterial PO2, PCO2 and pH in the anaesthetized dog.
    Tøndevold E; Eriksen J; Jansen E
    Acta Orthop Scand; 1979 Dec; 50(6 Pt 1):645-51. PubMed ID: 43659
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adrenal medullary and cortical blood flow during hemorrhage.
    Breslow MJ; Mennen A; Koehler RC; Traystman RJ
    Am J Physiol; 1986 Jun; 250(6 Pt 2):H954-60. PubMed ID: 3717367
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regional blood flow in brain and peripheral tissues during acute experimental arterial subdural bleeding.
    Orlin JR; Zwetnow NN; Hall C
    Acta Neurochir (Wien); 1993; 122(3-4):257-65. PubMed ID: 8372718
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Changes in distribution of cardiac output after hemorrhage in rabbits.
    Neutze JM; Wyler F; Rudolph AM
    Am J Physiol; 1968 Oct; 215(4):857-64. PubMed ID: 4877655
    [No Abstract]   [Full Text] [Related]  

  • 54. Periodic hemodynamics in skeletal muscle during local arterial pressure reduction.
    Schmidt JA; Intaglietta M; Borgström P
    J Appl Physiol (1985); 1992 Sep; 73(3):1077-83. PubMed ID: 1400020
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Validation of automated spectrofluroimetry for measurement of regional organ perfusion using fluorescent microspheres.
    Schimmel C; Frazer D; Huckins SR; Glenny RW
    Comput Methods Programs Biomed; 2000 Jun; 62(2):115-25. PubMed ID: 10764938
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of laser-Doppler perfusion imaging for measurement of blood flow in cortical bone.
    Shymkiw RC; Zernicke RF; Forrester KR; Bray RC
    J Appl Physiol (1985); 2001 Apr; 90(4):1314-8. PubMed ID: 11247929
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cerebral blood flow determinations using fluorescent microspheres: variations on the sedimentation method validated.
    Powers KM; Schimmel C; Glenny RW; Bernards CM
    J Neurosci Methods; 1999 Mar; 87(2):159-65. PubMed ID: 11230812
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [A new experimental model for repetitive osseous blood supply measurement].
    Nolte D; Raab S; Thein E; Draenert K; Ehrenfeld M; Messmer K
    Mund Kiefer Gesichtschir; 1999 May; 3 Suppl 1():S147-50. PubMed ID: 10414103
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hemodynamic effects of blood loss during a passive response to a stressor in the conscious rabbit.
    Schadt JC; Hasser EM
    Am J Physiol Regul Integr Comp Physiol; 2004 Feb; 286(2):R373-80. PubMed ID: 14592929
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of hemorrhage on blood flow to marrow and osseous tissue in conscious rabbits.
    Syftestad GT; Boelkins JN
    Am J Physiol; 1980 Mar; 238(3):H360-4. PubMed ID: 7369381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.