BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12730211)

  • 1. Selective loss of trans-acting instability determinants of neurofilament mRNA in amyotrophic lateral sclerosis spinal cord.
    Ge WW; Leystra-Lantz C; Wen W; Strong MJ
    J Biol Chem; 2003 Jul; 278(29):26558-63. PubMed ID: 12730211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS).
    Volkening K; Leystra-Lantz C; Yang W; Jaffee H; Strong MJ
    Brain Res; 2009 Dec; 1305():168-82. PubMed ID: 19815002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 14-3-3 protein binds to the low molecular weight neurofilament (NFL) mRNA 3' UTR.
    Ge WW; Volkening K; Leystra-Lantz C; Jaffe H; Strong MJ
    Mol Cell Neurosci; 2007 Jan; 34(1):80-7. PubMed ID: 17098443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered microRNA expression profile in Amyotrophic Lateral Sclerosis: a role in the regulation of NFL mRNA levels.
    Campos-Melo D; Droppelmann CA; He Z; Volkening K; Strong MJ
    Mol Brain; 2013 May; 6():26. PubMed ID: 23705811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dysregulation of human NEFM and NEFH mRNA stability by ALS-linked miRNAs.
    Campos-Melo D; Hawley ZCE; Strong MJ
    Mol Brain; 2018 Jul; 11(1):43. PubMed ID: 30029677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MiR-105 and miR-9 regulate the mRNA stability of neuronal intermediate filaments. Implications for the pathogenesis of amyotrophic lateral sclerosis (ALS).
    Hawley ZCE; Campos-Melo D; Strong MJ
    Brain Res; 2019 Mar; 1706():93-100. PubMed ID: 30385300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human low molecular weight neurofilament (NFL) mRNA interacts with a predicted p190RhoGEF homologue (RGNEF) in humans.
    Volkening K; Leystra-Lantz C; Strong MJ
    Amyotroph Lateral Scler; 2010; 11(1-2):97-103. PubMed ID: 19488899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of novel NEFL mRNA targeting microRNAs in amyotrophic lateral sclerosis.
    Ishtiaq M; Campos-Melo D; Volkening K; Strong MJ
    PLoS One; 2014; 9(1):e85653. PubMed ID: 24454911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS).
    Wong NK; He BP; Strong MJ
    J Neuropathol Exp Neurol; 2000 Nov; 59(11):972-82. PubMed ID: 11089575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurofilament metabolism in sporadic amyotrophic lateral sclerosis.
    Strong MJ
    J Neurol Sci; 1999 Oct; 169(1-2):170-7. PubMed ID: 10540027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermediate filament steady-state mRNA levels in amyotrophic lateral sclerosis.
    Strong MJ; Leystra-Lantz C; Ge WW
    Biochem Biophys Res Commun; 2004 Apr; 316(2):317-22. PubMed ID: 15020220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis.
    Menzies FM; Grierson AJ; Cookson MR; Heath PR; Tomkins J; Figlewicz DA; Ince PG; Shaw PJ
    J Neurochem; 2002 Sep; 82(5):1118-28. PubMed ID: 12358759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein.
    Strong MJ; Volkening K; Hammond R; Yang W; Strong W; Leystra-Lantz C; Shoesmith C
    Mol Cell Neurosci; 2007 Jun; 35(2):320-7. PubMed ID: 17481916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons.
    Bergeron C; Beric-Maskarel K; Muntasser S; Weyer L; Somerville MJ; Percy ME
    J Neuropathol Exp Neurol; 1994 May; 53(3):221-30. PubMed ID: 7909836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitration of the low molecular weight neurofilament is equivalent in sporadic amyotrophic lateral sclerosis and control cervical spinal cord.
    Strong MJ; Sopper MM; Crow JP; Strong WL; Beckman JS
    Biochem Biophys Res Commun; 1998 Jul; 248(1):157-64. PubMed ID: 9675103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons.
    Mu X; He J; Anderson DW; Trojanowski JQ; Springer JE
    Ann Neurol; 1996 Sep; 40(3):379-86. PubMed ID: 8797527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rho guanine nucleotide exchange factor is an NFL mRNA destabilizing factor that forms cytoplasmic inclusions in amyotrophic lateral sclerosis.
    Droppelmann CA; Keller BA; Campos-Melo D; Volkening K; Strong MJ
    Neurobiol Aging; 2013 Jan; 34(1):248-62. PubMed ID: 22835604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of GDNF receptor (RET and GDNFR-alpha) mRNAs in the spinal cord of patients with amyotrophic lateral sclerosis.
    Mitsuma N; Yamamoto M; Li M; Ito Y; Mitsuma T; Mutoh T; Takahashi M; Sobue G
    Brain Res; 1999 Feb; 820(1-2):77-85. PubMed ID: 10023033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS).
    Strong MJ
    J Neurol Sci; 2010 Jan; 288(1-2):1-12. PubMed ID: 19840884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of VGF nerve growth factor inducible-producing cells in human spinal cords and expression change in patients with amyotrophic lateral sclerosis.
    Noda Y; Tanaka M; Nakamura S; Ito J; Kakita A; Hara H; Shimazawa M
    Int J Med Sci; 2020; 17(4):480-489. PubMed ID: 32174778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.