BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12730240)

  • 1. Physical and genetic interactions of cytosolic malate dehydrogenase with other gluconeogenic enzymes.
    Gibson N; McAlister-Henn L
    J Biol Chem; 2003 Jul; 278(28):25628-36. PubMed ID: 12730240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast.
    Minard KI; McAlister-Henn L
    J Biol Chem; 1992 Aug; 267(24):17458-64. PubMed ID: 1324938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events.
    Hung GC; Brown CR; Wolfe AB; Liu J; Chiang HL
    J Biol Chem; 2004 Nov; 279(47):49138-50. PubMed ID: 15358789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose-induced phosphorylation of the MDH2 isozyme of malate dehydrogenase in Saccharomyces cerevisiae.
    Minard KI; McAlister-Henn L
    Arch Biochem Biophys; 1994 Dec; 315(2):302-9. PubMed ID: 7986072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cat8 and Sip4 mediate regulated transcriptional activation of the yeast malate dehydrogenase gene MDH2 by three carbon source-responsive promoter elements.
    Roth S; Schüller HJ
    Yeast; 2001 Jan; 18(2):151-62. PubMed ID: 11169757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae.
    Hämmerle M; Bauer J; Rose M; Szallies A; Thumm M; Düsterhus S; Mecke D; Entian KD; Wolf DH
    J Biol Chem; 1998 Sep; 273(39):25000-5. PubMed ID: 9737955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic effects of altering redundant targeting signals for yeast mitochondrial malate dehydrogenase.
    Small WC; McAlister-Henn L
    Arch Biochem Biophys; 1997 Aug; 344(1):53-60. PubMed ID: 9244381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, nucleotide sequence analysis, and disruption of the MDH2 gene from Saccharomyces cerevisiae: evidence for three isozymes of yeast malate dehydrogenase.
    Minard KI; McAlister-Henn L
    Mol Cell Biol; 1991 Jan; 11(1):370-80. PubMed ID: 1986231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of glyoxysomal malate dehydrogenase (MDH3) from Saccharomyces cerevisiae.
    Moriyama S; Nishio K; Mizushima T
    Acta Crystallogr F Struct Biol Commun; 2018 Oct; 74(Pt 10):617-624. PubMed ID: 30279312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of gluconeogenic enzymes; Icl1, Fbp1, and Mdh2 by Gid4 ligase: A molecular docking study.
    Elfiky AA; Ismail AM; Elshemey WM
    J Mol Recognit; 2020 May; 33(5):e2831. PubMed ID: 31863529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes.
    Chen SJ; Wu X; Wadas B; Oh JH; Varshavsky A
    Science; 2017 Jan; 355(6323):. PubMed ID: 28126757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Futile cycles in Saccharomyces cerevisiae strains expressing the gluconeogenic enzymes during growth on glucose.
    Navas MA; Cerdán S; Gancedo JM
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1290-4. PubMed ID: 8381962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in regulation of yeast gluconeogenesis revealed by Cat8p-independent activation of PCK1 and FBP1 genes in Kluyveromyces lactis.
    Georis I; Krijger JJ; Breunig KD; Vandenhaute J
    Mol Gen Genet; 2000 Sep; 264(1-2):193-203. PubMed ID: 11016849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and function of a mislocalized form of peroxisomal malate dehydrogenase (MDH3) in yeast.
    McAlister-Henn L; Steffan JS; Minard KI; Anderson SL
    J Biol Chem; 1995 Sep; 270(36):21220-5. PubMed ID: 7673155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytosolic RNA binding of the mitochondrial TCA cycle enzyme malate dehydrogenase.
    Noble M; Chatterjee A; Sekaran T; Schwarzl T; Hentze MW
    RNA; 2024 Jun; 30(7):839-853. PubMed ID: 38609156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae.
    Pines O; Shemesh S; Battat E; Goldberg I
    Appl Microbiol Biotechnol; 1997 Aug; 48(2):248-55. PubMed ID: 9299784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The levels of yeast gluconeogenic mRNAs respond to environmental factors.
    Mercado JJ; Smith R; Sagliocco FA; Brown AJ; Gancedo JM
    Eur J Biochem; 1994 Sep; 224(2):473-81. PubMed ID: 7925362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of mutations of GID protein-coding genes on malate production and enzyme expression profiles in Saccharomyces cerevisiae.
    Negoro H; Matsumura K; Matsuda F; Shimizu H; Hata Y; Ishida H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4971-4983. PubMed ID: 32248437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of Substrates and Components of the Pro/N-Degron Pathway.
    Chen SJ; Melnykov A; Varshavsky A
    Biochemistry; 2020 Feb; 59(4):582-593. PubMed ID: 31895557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The gluconeogenic enzyme fructose-1,6-bisphosphatase is dispensable for growth of the yeast Yarrowia lipolytica in gluconeogenic substrates.
    Jardón R; Gancedo C; Flores CL
    Eukaryot Cell; 2008 Oct; 7(10):1742-9. PubMed ID: 18689525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.