These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 12730345)

  • 21. Sustained depolarization-induced propagation of [Ca2+]i oscillations in cultured DRG neurons: the involvement of extracellular ATP and P2Y receptor activation.
    Zeng Y; Lv XH; Zeng SQ; Tian SL; Li M; Shi J
    Brain Res; 2008 Nov; 1239():12-23. PubMed ID: 18804455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purinergic stimulation of carotid body efferent glossopharyngeal neurones increases intracellular Ca2+ and nitric oxide production.
    Lowe M; Park SJ; Nurse CA; Campanucci VA
    Exp Physiol; 2013 Jul; 98(7):1199-212. PubMed ID: 23525247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adenosine inhibits L-type Ca2+ current and catecholamine release in the rabbit carotid body chemoreceptor cells.
    Rocher A; Gonzalez C; Almaraz L
    Eur J Neurosci; 1999 Feb; 11(2):673-81. PubMed ID: 10051768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of chemostimuli on [Ca2+]i responses of rat aortic body type I cells and endogenous local neurons: comparison with carotid body cells.
    Piskuric NA; Nurse CA
    J Physiol; 2012 May; 590(9):2121-35. PubMed ID: 22431340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence that 5-HT stimulates intracellular Ca
    Murali S; Zhang M; Nurse CA
    J Physiol; 2017 Jul; 595(13):4261-4277. PubMed ID: 28332205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells.
    Buckler KJ; Vaughan-Jones RD
    J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):157-71. PubMed ID: 7965831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Postnatal development of E-4031-sensitive potassium current in rat carotid chemoreceptor cells.
    Kim I; Boyle KM; Carroll JL
    J Appl Physiol (1985); 2005 Apr; 98(4):1469-77. PubMed ID: 15591286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An ATP-activated channel is involved in mitogenic stimulation of human T lymphocytes.
    Baricordi OR; Ferrari D; Melchiorri L; Chiozzi P; Hanau S; Chiari E; Rubini M; Di Virgilio F
    Blood; 1996 Jan; 87(2):682-90. PubMed ID: 8555491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of purinergic P2X receptors as pacemaking channels and modulators of calcium-mobilizing pathway in pituitary gonadotrophs.
    Zemkova H; Balik A; Jiang Y; Kretschmannova K; Stojilkovic SS
    Mol Endocrinol; 2006 Jun; 20(6):1423-36. PubMed ID: 16543406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Augmentation of calcium current by hypoxia in carotid body glomus cells.
    Summers BA; Overholt JL; Prabhakar NR
    Adv Exp Med Biol; 2000; 475():589-99. PubMed ID: 10849699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of intracellular calcium by ATP in isolated outer hair cells of the guinea-pig cochlea.
    Ashmore JF; Ohmori H
    J Physiol; 1990 Sep; 428():109-31. PubMed ID: 2172519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extracellular adenosine 5'-ATP-induced calcium signaling in isolated vestibular ganglion cells of the guinea pig.
    Nagata N; Harada N; Chen L; Cho H; Tomoda K; Yamashita T
    Acta Otolaryngol; 2000 Sep; 120(6):704-9. PubMed ID: 11099145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-activation of P2Y2 receptor and TRPV channel by ATP: implications for ATP induced pain.
    Lakshmi S; Joshi PG
    Cell Mol Neurobiol; 2005 Aug; 25(5):819-32. PubMed ID: 16133936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Release of Ca2+ from intracellular store in smooth muscle cells of rat portal vein by ATP-induced Ca2+ entry.
    Pacaud P; Grégoire G; Loirand G
    Br J Pharmacol; 1994 Oct; 113(2):457-62. PubMed ID: 7834196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roles of Ca2+ influx through ATP-activated channels in catecholamine release from pheochromocytoma PC12 cells.
    Nakazawa K; Inoue K
    J Neurophysiol; 1992 Dec; 68(6):2026-32. PubMed ID: 1337102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Negative regulation of CFTR activity by extracellular ATP involves P2Y2 receptors in CFTR-expressing CHO cells.
    Marcet B; Chappe V; Delmas P; Gola M; Verrier B
    J Membr Biol; 2003 Jul; 194(1):21-32. PubMed ID: 14502440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells.
    Buckler KJ; Vaughan-Jones RD
    J Physiol; 1998 Dec; 513 ( Pt 3)(Pt 3):819-33. PubMed ID: 9824720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells.
    Kirischuk S; Möller T; Voitenko N; Kettenmann H; Verkhratsky A
    J Neurosci; 1995 Dec; 15(12):7861-71. PubMed ID: 8613725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATP causes glomus cell [Ca2+]c increase without corresponding increases in CSN activity.
    Mokashi A; Li J; Roy A; Baby SM; Lahiri S
    Respir Physiol Neurobiol; 2003 Oct; 138(1):1-18. PubMed ID: 14519374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of purinergic receptor channels and their role in calcium signaling and hormone release in pituitary gonadotrophs. Integration of P2 channels in plasma membrane- and endoplasmic reticulum-derived calcium oscillations.
    Tomić M; Jobin RM; Vergara LA; Stojilkovic SS
    J Biol Chem; 1996 Aug; 271(35):21200-8. PubMed ID: 8702891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.