These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 12730397)
1. Cultural and genetic approaches to managing mycotoxins in maize. Munkvold GP Annu Rev Phytopathol; 2003; 41():99-116. PubMed ID: 12730397 [TBL] [Abstract][Full Text] [Related]
2. Prospects for reducing fumonisin contamination of maize through genetic modification. Duvick J Environ Health Perspect; 2001 May; 109 Suppl 2(Suppl 2):337-42. PubMed ID: 11359705 [TBL] [Abstract][Full Text] [Related]
3. Biological control as a strategy to reduce the impact of mycotoxins in peanuts, grapes and cereals in Argentina. Chulze SN; Palazzini JM; Torres AM; Barros G; Ponsone ML; Geisen R; Schmidt-Heydt M; Köhl J Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):471-9. PubMed ID: 25427716 [TBL] [Abstract][Full Text] [Related]
4. Infection by mycotoxigenic fungal species and mycotoxin contamination of maize grain in Umbria, central Italy. Covarelli L; Beccari G; Salvi S Food Chem Toxicol; 2011 Sep; 49(9):2365-9. PubMed ID: 21723360 [TBL] [Abstract][Full Text] [Related]
5. The effect of enhanced carotenoid content of transgenic maize grain on fungal colonization and mycotoxin content. Díaz-Gómez J; Marín S; Nogareda C; Sanchis V; Ramos AJ Mycotoxin Res; 2016 Nov; 32(4):221-228. PubMed ID: 27522218 [TBL] [Abstract][Full Text] [Related]
6. A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Wicklow DT; Roth S; Deyrup ST; Gloer JB Mycol Res; 2005 May; 109(Pt 5):610-8. PubMed ID: 16018316 [TBL] [Abstract][Full Text] [Related]
7. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects. Gaikpa DS; Miedaner T Theor Appl Genet; 2019 Oct; 132(10):2721-2739. PubMed ID: 31440772 [TBL] [Abstract][Full Text] [Related]
8. Strategies to reduce mycotoxin levels in maize during storage: a review. Chulze SN Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 May; 27(5):651-7. PubMed ID: 20349375 [TBL] [Abstract][Full Text] [Related]
9. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia. Mukanga M; Derera J; Tongoona P; Laing MD Int J Food Microbiol; 2010 Jul; 141(3):213-21. PubMed ID: 20626099 [TBL] [Abstract][Full Text] [Related]
10. Aspergillus and Fusarium Mycotoxin Contamination in Maize ( Nyandi MS; Pepó P Toxins (Basel); 2024 Jul; 16(7):. PubMed ID: 39057958 [TBL] [Abstract][Full Text] [Related]
11. Implications of Bt traits on mycotoxin contamination in maize: Overview and recent experimental results in southern United States. Abbas HK; Zablotowicz RM; Weaver MA; Shier WT; Bruns HA; Bellaloui N; Accinelli C; Abel CA J Agric Food Chem; 2013 Dec; 61(48):11759-70. PubMed ID: 23750911 [TBL] [Abstract][Full Text] [Related]
12. Fungal growth and fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. Bakan B; Melcion D; Richard-Molard D; Cahagnier B J Agric Food Chem; 2002 Feb; 50(4):728-31. PubMed ID: 11829636 [TBL] [Abstract][Full Text] [Related]
13. Mycobiota and mycotoxin contamination of maize flours and popcorn kernels for human consumption commercialized in Spain. Alborch L; Bragulat MR; Castellá G; Abarca ML; Cabañes FJ Food Microbiol; 2012 Oct; 32(1):97-103. PubMed ID: 22850379 [TBL] [Abstract][Full Text] [Related]
14. Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy. Berardo N; Pisacane V; Battilani P; Scandolara A; Pietri A; Marocco A J Agric Food Chem; 2005 Oct; 53(21):8128-34. PubMed ID: 16218654 [TBL] [Abstract][Full Text] [Related]
15. Assessing several fungal contaminants and their associated mycotoxins in maize cultivated on cornfields of Republic of Moldova. Grajdieru C; Mitina I; Tumanova L; Mitin V Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2024 Jun; 41(6):675-687. PubMed ID: 38662872 [TBL] [Abstract][Full Text] [Related]
16. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride. Naef A; Zesiger T; Défago G J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384 [TBL] [Abstract][Full Text] [Related]
17. Climatic models to predict occurrence of Fusarium toxins in wheat and maize. Schaafsma AW; Hooker DC Int J Food Microbiol; 2007 Oct; 119(1-2):116-25. PubMed ID: 17900733 [TBL] [Abstract][Full Text] [Related]
18. Fusarium spp. and Fusarium mycotoxins in maize: a problem for Flanders? Isebaert S; Haesaert G; Devreese R; Maene P; Fremaut F; Vlaemynck G Commun Agric Appl Biol Sci; 2005; 70(3):129-36. PubMed ID: 16637167 [TBL] [Abstract][Full Text] [Related]
19. Maize peroxidase Px5 has a highly conserved sequence in inbreds resistant to mycotoxin producing fungi which enhances fungal and insect resistance. Dowd PF; Johnson ET J Plant Res; 2016 Jan; 129(1):13-20. PubMed ID: 26659597 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of mycotoxin and Aspergillus flavus levels in aging Bt and non-Bt corn residues under Mississippi no-till conditions. Abbas HK; Accinelli C; Zablotowicz RM; Abel CA; Bruns HA; Dong Y; Shier WT J Agric Food Chem; 2008 Aug; 56(16):7578-85. PubMed ID: 18642924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]