These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12730459)

  • 1. Multiple regulatory mechanisms maintain zinc homeostasis in Saccharomyces cerevisiae.
    Eide DJ
    J Nutr; 2003 May; 133(5 Suppl 1):1532S-5S. PubMed ID: 12730459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription factors and transporters in zinc homeostasis: lessons learned from fungi.
    Eide DJ
    Crit Rev Biochem Mol Biol; 2020 Feb; 55(1):88-110. PubMed ID: 32192376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular sensing and transport of metal ions: implications in micronutrient homeostasis.
    Bird AJ
    J Nutr Biochem; 2015 Nov; 26(11):1103-15. PubMed ID: 26342943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cytosolic domain of the yeast Zrt1 zinc transporter is required for its post-translational inactivation in response to zinc and cadmium.
    Gitan RS; Shababi M; Kramer M; Eide DJ
    J Biol Chem; 2003 Oct; 278(41):39558-64. PubMed ID: 12893829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryotic zinc transporters and their regulation.
    Gaither LA; Eide DJ
    Biometals; 2001; 14(3-4):251-70. PubMed ID: 11831460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Amino Acid Transport in Saccharomyces cerevisiae.
    Bianchi F; Van't Klooster JS; Ruiz SJ; Poolman B
    Microbiol Mol Biol Rev; 2019 Nov; 83(4):. PubMed ID: 31619504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc homeostasis in the secretory pathway in yeast.
    Bird AJ; Wilson S
    Curr Opin Chem Biol; 2020 Apr; 55():145-150. PubMed ID: 32114317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of ctr1Δ300, a high-affinity copper transporter with deletion of the cytosolic C-terminus in Saccharomyces cerevisiae under excess copper, leads to disruption of transition metal homeostasis and transcriptional remodelling of cellular processes.
    Schuller A; Auffermann G; Zoschke K; Schmidt U; Ostermann K; Rödel G
    Yeast; 2013 May; 30(5):201-18. PubMed ID: 23576094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc sensing and regulation in yeast model systems.
    Wilson S; Bird AJ
    Arch Biochem Biophys; 2016 Dec; 611():30-36. PubMed ID: 26940262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock.
    MacDiarmid CW; Milanick MA; Eide DJ
    J Biol Chem; 2003 Apr; 278(17):15065-72. PubMed ID: 12556516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family.
    Yang M; Jensen LT; Gardner AJ; Culotta VC
    Biochem J; 2005 Mar; 386(Pt 3):479-87. PubMed ID: 15498024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study.
    Pagani MA; Casamayor A; Serrano R; Atrian S; Ariño J
    Mol Microbiol; 2007 Jul; 65(2):521-37. PubMed ID: 17630978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hammering out details: regulating metal levels in eukaryotes.
    Ehrensberger KM; Bird AJ
    Trends Biochem Sci; 2011 Oct; 36(10):524-31. PubMed ID: 21840721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae.
    Eide DJ
    J Biol Chem; 2009 Jul; 284(28):18565-9. PubMed ID: 19363031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular biology of metal ion transport in Saccharomyces cerevisiae.
    Eide DJ
    Annu Rev Nutr; 1998; 18():441-69. PubMed ID: 9706232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metalloregulation of yeast membrane steroid receptor homologs.
    Lyons TJ; Villa NY; Regalla LM; Kupchak BR; Vagstad A; Eide DJ
    Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5506-11. PubMed ID: 15060275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of Zhf and the tightly regulated zinc-uptake system SpZrt1 in Schizosaccharomyces pombe reveals the delicacy of cellular zinc balance.
    Boch A; Trampczynska A; Simm C; Taudte N; Krämer U; Clemens S
    FEMS Yeast Res; 2008 Sep; 8(6):883-96. PubMed ID: 18637840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the molecular relationships between high-zinc tolerance and aconitase (Aco1) in Saccharomyces cerevisiae.
    Guirola M; Jiménez-Martí E; Atrian S
    Metallomics; 2014 Mar; 6(3):634-45. PubMed ID: 24503898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugar and Glycerol Transport in Saccharomyces cerevisiae.
    Bisson LF; Fan Q; Walker GA
    Adv Exp Med Biol; 2016; 892():125-168. PubMed ID: 26721273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling regulation of zinc uptake via ZIP transporters in yeast and plant roots.
    Claus J; Chavarría-Krauser A
    PLoS One; 2012; 7(6):e37193. PubMed ID: 22715365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.