These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12730598)

  • 21. The dependence of the Schottky barrier height on carbon nanotube diameter for Pd-carbon nanotube contacts.
    Svensson J; Sourab AA; Tarakanov Y; Lee DS; Park SJ; Baek SJ; Park YW; Campbell EE
    Nanotechnology; 2009 Apr; 20(17):175204. PubMed ID: 19420588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. n-Type field-effect transistors made of an individual nitrogen-doped multiwalled carbon nanotube.
    Xiao K; Liu Y; Hu P; Yu G; Sun Y; Zhu D
    J Am Chem Soc; 2005 Jun; 127(24):8614-7. PubMed ID: 15954765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uncovering operational mechanisms of a single-walled carbon nanotube network device using local probe electrical characterizations.
    Jeong H; Gweon HM; Kwon BJ; Ahn YH; Lee S; Park JY
    Nanotechnology; 2009 Aug; 20(34):345202. PubMed ID: 19652281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal-carbon nanotube contacts: the link between Schottky barrier and chemical bonding.
    Vitale V; Curioni A; Andreoni W
    J Am Chem Soc; 2008 May; 130(18):5848-9. PubMed ID: 18410108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A nonvolatile memory device made of a ferroelectric polymer gate nanodot and a single-walled carbon nanotube.
    Son JY; Ryu S; Park YC; Lim YT; Shin YS; Shin YH; Jang HM
    ACS Nano; 2010 Dec; 4(12):7315-20. PubMed ID: 21050014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-performance carbon nanotube light-emitting diodes with asymmetric contacts.
    Wang S; Zeng Q; Yang L; Zhang Z; Wang Z; Pei T; Ding L; Liang X; Gao M; Li Y; Peng LM
    Nano Lett; 2011 Jan; 11(1):23-9. PubMed ID: 21117697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrical detection of hepatitis C virus RNA on single wall carbon nanotube-field effect transistors.
    Dastagir T; Forzani ES; Zhang R; Amlani I; Nagahara LA; Tsui R; Tao N
    Analyst; 2007 Aug; 132(8):738-40. PubMed ID: 17646871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A light-emitting field-effect transistor.
    Schön JH; Dodabalapur A; Kloc C; Batlogg B
    Science; 2000 Nov; 290(5493):963-6. PubMed ID: 11062124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths.
    Xia F; Steiner M; Lin YM; Avouris P
    Nat Nanotechnol; 2008 Oct; 3(10):609-13. PubMed ID: 18839000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions.
    Bandaru PR; Daraio C; Jin S; Rao AM
    Nat Mater; 2005 Sep; 4(9):663-6. PubMed ID: 16100516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Field-effect electroluminescence in silicon nanocrystals.
    Walters RJ; Bourianoff GI; Atwater HA
    Nat Mater; 2005 Feb; 4(2):143-6. PubMed ID: 15665836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large signal operation of small band-gap carbon nanotube-based ambipolar transistor: a high-performance frequency doubler.
    Wang Z; Ding L; Pei T; Zhang Z; Wang S; Yu T; Ye X; Peng F; Li Y; Peng LM
    Nano Lett; 2010 Sep; 10(9):3648-55. PubMed ID: 20677775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic scale modeling of electrically doped p-i-n FET from adenine based single wall nanotube.
    Dey D; Roy P; De D
    J Mol Graph Model; 2017 Sep; 76():118-127. PubMed ID: 28719843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon nanotube field effect transistors for the fast and selective detection of human immunoglobulin G.
    Cid CC; Riu J; Maroto A; Rius FX
    Analyst; 2008 Aug; 133(8):1005-8. PubMed ID: 18645640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronically monitoring biological interactions with carbon nanotube field-effect transistors.
    Kauffman DR; Star A
    Chem Soc Rev; 2008 Jun; 37(6):1197-206. PubMed ID: 18497932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Air-assisted high-performance field-effect transistor with thin films of picene.
    Okamoto H; Kawasaki N; Kaji Y; Kubozono Y; Fujiwara A; Yamaji M
    J Am Chem Soc; 2008 Aug; 130(32):10470-1. PubMed ID: 18627146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A tunable carbon nanotube electromechanical oscillator.
    Sazonova V; Yaish Y; Ustünel H; Roundy D; Arias TA; McEuen PL
    Nature; 2004 Sep; 431(7006):284-7. PubMed ID: 15372026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Azafullerene encapsulated single-walled carbon nanotubes with n-type electrical transport property.
    Kaneko T; Li Y; Nishigaki S; Hatakeyama R
    J Am Chem Soc; 2008 Mar; 130(9):2714-5. PubMed ID: 18257566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors.
    Kim JP; Lee BY; Lee J; Hong S; Sim SJ
    Biosens Bioelectron; 2009 Jul; 24(11):3372-8. PubMed ID: 19481922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.