These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

561 related articles for article (PubMed ID: 12731032)

  • 1. Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications.
    Wang B; Abdulali-Kanji Z; Dodwell E; Horton JH; Oleschuk RD
    Electrophoresis; 2003 May; 24(9):1442-50. PubMed ID: 12731032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field-effect flow control in a polydimethylsiloxane-based microfluidic system.
    Buch JS; Wang PC; DeVoe DL; Lee CS
    Electrophoresis; 2001 Oct; 22(18):3902-7. PubMed ID: 11700719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of poly(dimethylsiloxane) with a perfluorinated alkoxysilane for selectivity toward fluorous tagged peptides.
    Wang D; Goel V; Oleschuk RD; Horton JH
    Langmuir; 2008 Feb; 24(3):1080-6. PubMed ID: 18163653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(oxyethylene) based surface coatings for poly(dimethylsiloxane) microchannels.
    Hellmich W; Regtmeier J; Duong TT; Ros R; Anselmetti D; Ros A
    Langmuir; 2005 Aug; 21(16):7551-7. PubMed ID: 16042494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroosmotic flow in a poly(dimethylsiloxane) channel does not depend on percent curing agent.
    Wheeler AR; Trapp G; Trapp O; Zare RN
    Electrophoresis; 2004 Apr; 25(7-8):1120-4. PubMed ID: 15095455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of PDMS-modified glass from cast-and-peel fabrication.
    Liu K; Tian Y; Pitchimani R; Huang M; Lincoln H; Pappas D
    Talanta; 2009 Jul; 79(2):333-8. PubMed ID: 19559887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary zone electrophoresis of amino acids on a hybrid poly(dimethylsiloxane)-glass chip.
    Mourzina Y; Steffen A; Kalyagin D; Carius R; Offenhäusser A
    Electrophoresis; 2005 May; 26(9):1849-60. PubMed ID: 15719361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis.
    Vickers JA; Caulum MM; Henry CS
    Anal Chem; 2006 Nov; 78(21):7446-52. PubMed ID: 17073411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of poly(dimethylsiloxane) microfluidic channels with silica nanoparticles based on layer-by-layer assembly technique.
    Wang W; Zhao L; Zhang JR; Wang XM; Zhu JJ; Chen HY
    J Chromatogr A; 2006 Dec; 1136(1):111-7. PubMed ID: 17078959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraviolet sealing and poly(dimethylacrylamide) modification for poly(dimethylsiloxane)/glass microchips.
    Chen L; Ren J; Bi R; Chen D
    Electrophoresis; 2004 Mar; 25(6):914-21. PubMed ID: 15004855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
    Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR
    Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled epoxy-modified polymer coating on a poly(dimethylsiloxane) microchip for EOF inhibition and biopolymers separation.
    Wu D; Qin J; Lin B
    Lab Chip; 2007 Nov; 7(11):1490-6. PubMed ID: 17960276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially controlled cell adhesion via micropatterned surface modification of poly(dimethylsiloxane).
    Patrito N; McCague C; Norton PR; Petersen NO
    Langmuir; 2007 Jan; 23(2):715-9. PubMed ID: 17209625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling electroosmotic flow in poly(dimethylsiloxane) separation channels by means of prepolymer additives.
    Luo Y; Huang B; Wu H; Zare RN
    Anal Chem; 2006 Jul; 78(13):4588-92. PubMed ID: 16808469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining.
    Zhao DS; Roy B; McCormick MT; Kuhr WG; Brazill SA
    Lab Chip; 2003 May; 3(2):93-9. PubMed ID: 15100789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
    Wu H; Huang B; Zare RN
    Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication improvements for thermoset polyester (TPE) microfluidic devices.
    Fiorini GS; Yim M; Jeffries GD; Schiro PG; Mutch SA; Lorenz RM; Chiu DT
    Lab Chip; 2007 Jul; 7(7):923-6. PubMed ID: 17594014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive heparin immobilized onto microfluidic channels in poly(dimethylsiloxane) results in hydrophilic surface properties.
    Thorslund S; Sanchez J; Larsson R; Nikolajeff F; Bergquist J
    Colloids Surf B Biointerfaces; 2005 Dec; 46(4):240-7. PubMed ID: 16352425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering transfer of micro- and nanometer-scale features by surface energy modification.
    Cortese B; Piliego C; Viola I; D'Amone S; Cingolani R; Gigli G
    Langmuir; 2009 Jun; 25(12):7025-31. PubMed ID: 19405480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells.
    Peterson SL; McDonald A; Gourley PL; Sasaki DY
    J Biomed Mater Res A; 2005 Jan; 72(1):10-8. PubMed ID: 15534867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.