These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 12731868)
1. Crystal structures of the ribonuclease MC1 mutants N71T and N71S in complex with 5'-GMP: structural basis for alterations in substrate specificity. Numata T; Suzuki A; Kakuta Y; Kimura K; Yao M; Tanaka I; Yoshida Y; Ueda T; Kimura M Biochemistry; 2003 May; 42(18):5270-8. PubMed ID: 12731868 [TBL] [Abstract][Full Text] [Related]
2. Crystal structures of the ribonuclease MC1 from bitter gourd seeds, complexed with 2'-UMP or 3'-UMP, reveal structural basis for uridine specificity. Suzuki A; Yao M; Tanaka I; Numata T; Kikukawa S; Yamasaki N; Kimura M Biochem Biophys Res Commun; 2000 Aug; 275(2):572-6. PubMed ID: 10964705 [TBL] [Abstract][Full Text] [Related]
3. Amino acid residues in ribonuclease MC1 from bitter gourd seeds which are essential for uridine specificity. Numata T; Suzuki A; Yao M; Tanaka I; Kimura M Biochemistry; 2001 Jan; 40(2):524-30. PubMed ID: 11148047 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional structure of ribonuclease T1 complexed with an isosteric phosphonate substrate analogue of GpU: alternate substrate binding modes and catalysis. Arni RK; Watanabe L; Ward RJ; Kreitman RJ; Kumar K; Walz FG Biochemistry; 1999 Feb; 38(8):2452-61. PubMed ID: 10029539 [TBL] [Abstract][Full Text] [Related]
5. Molecular basis for nucleotide-binding specificity: role of the exocyclic amino group "N2" in recognition by a guanylyl-ribonuclease. Schrift GL; Waldron TT; Timmons MA; Ramaswamy S; Kearney WR; Murphy KP J Mol Biol; 2006 Jan; 355(1):72-84. PubMed ID: 16300786 [TBL] [Abstract][Full Text] [Related]
6. Crystal structures of ribonuclease F1 of Fusarium moniliforme in its free form and in complex with 2'GMP. Vassylyev DG; Katayanagi K; Ishikawa K; Tsujimoto-Hirano M; Danno M; Pähler A; Matsumoto O; Matsushima M; Yoshida H; Morikawa K J Mol Biol; 1993 Apr; 230(3):979-96. PubMed ID: 8386773 [TBL] [Abstract][Full Text] [Related]
7. Structural analysis of an RNase T1 variant with an altered guanine binding segment. Höschler K; Hoier H; Hubner B; Saenger W; Orth P; Hahn U J Mol Biol; 1999 Dec; 294(5):1231-8. PubMed ID: 10600381 [TBL] [Abstract][Full Text] [Related]
9. Guanine binding site of the Nicotiana glutinosa ribonuclease NW revealed by X-ray crystallography. Kawano S; Kakuta Y; Kimura M Biochemistry; 2002 Dec; 41(51):15195-202. PubMed ID: 12484757 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of ribonuclease T1 carboxymethylated at Glu58 in complex with 2'-GMP. Ishikawa K; Suzuki E; Tanokura M; Takahashi K Biochemistry; 1996 Jun; 35(25):8329-34. PubMed ID: 8679590 [TBL] [Abstract][Full Text] [Related]
11. Crystal structures of the Nicotiana glutinosa ribonuclease NT in complex with nucleoside monophosphates. Kawano S; Kakuta Y; Nakashima T; Kimura M J Biochem; 2006 Sep; 140(3):375-81. PubMed ID: 16870673 [TBL] [Abstract][Full Text] [Related]
12. Contribution of Gln9 and Phe80 to substrate binding in ribonuclease MC1 from bitter gourd seeds. Numata T; Kimura M J Biochem; 2001 Nov; 130(5):621-6. PubMed ID: 11686924 [TBL] [Abstract][Full Text] [Related]
13. Expression and mutational analysis of amino acid residues involved in catalytic activity in a ribonuclease MC1 from the seeds of bitter gourd. Numata T; Kashiba T; Hino M; Funatsu G; Ishiguro M; Yamasaki N; Kimura M Biosci Biotechnol Biochem; 2000 Mar; 64(3):603-5. PubMed ID: 10803962 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus. Chon H; Matsumura H; Koga Y; Takano K; Kanaya S J Mol Biol; 2006 Feb; 356(1):165-78. PubMed ID: 16343535 [TBL] [Abstract][Full Text] [Related]
15. Altering the purine specificity of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus by structure-based point mutations in the enzyme protein. Munagala NR; Wang CC Biochemistry; 1998 Nov; 37(47):16612-9. PubMed ID: 9843428 [TBL] [Abstract][Full Text] [Related]
16. Structures of free and complexed forms of Escherichia coli xanthine-guanine phosphoribosyltransferase. Vos S; Parry RJ; Burns MR; de Jersey J; Martin JL J Mol Biol; 1998 Oct; 282(4):875-89. PubMed ID: 9743633 [TBL] [Abstract][Full Text] [Related]
17. Structural determinants of the uridine-preferring specificity of RNase PL3. Vicentini AM; Kote-Jarai Z; Hofsteenge J Biochemistry; 1996 Jul; 35(28):9128-32. PubMed ID: 8703917 [TBL] [Abstract][Full Text] [Related]
18. Analysis of internal motions of RNase T1 complexed with a productive substrate involving 15N NMR relaxation measurements. Yoshida Y; Tanaka M; Ohkuri T; Tanaka Y; Imoto T; Ueda T J Biochem; 2006 Jul; 140(1):43-8. PubMed ID: 16877767 [TBL] [Abstract][Full Text] [Related]
19. Calculation of the relative binding free energy of 2'GMP and 2'AMP to ribonuclease T1 using molecular dynamics/free energy perturbation approaches. Hirono S; Kollman PA J Mol Biol; 1990 Mar; 212(1):197-209. PubMed ID: 2157020 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of a ribonuclease from the seeds of bitter gourd (Momordica charantia) at 1.75 A resolution. Nakagawa A; Tanaka I; Sakai R; Nakashima T; Funatsu G; Kimura M Biochim Biophys Acta; 1999 Aug; 1433(1-2):253-60. PubMed ID: 10446375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]