BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 12731889)

  • 21. Crystallization and preliminary crystallographic analysis of the proline dehydrogenase domain of the multifunctional PutA flavoprotein from Escherichia coli.
    Nadaraia S; Lee YH; Becker DF; Tanner JJ
    Acta Crystallogr D Biol Crystallogr; 2001 Dec; 57(Pt 12):1925-7. PubMed ID: 11717519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure, function, and mechanism of proline utilization A (PutA).
    Liu LK; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2017 Oct; 632():142-157. PubMed ID: 28712849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxygen reactivity of PutA from Helicobacter species and proline-linked oxidative stress.
    Krishnan N; Becker DF
    J Bacteriol; 2006 Feb; 188(4):1227-35. PubMed ID: 16452403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence analysis identifies the proline dehydrogenase and delta 1-pyrroline-5-carboxylate dehydrogenase domains of the multifunctional Escherichia coli PutA protein.
    Ling M; Allen SW; Wood JM
    J Mol Biol; 1994 Nov; 243(5):950-6. PubMed ID: 7966312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing hydrogen-bonding interactions in the active site of medium-chain acyl-CoA dehydrogenase using Raman spectroscopy.
    Wu J; Bell AF; Luo L; Stephens AW; Stankovich MT; Tonge PJ
    Biochemistry; 2003 Oct; 42(40):11846-56. PubMed ID: 14529297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic and thermodynamic analysis of Bradyrhizobium japonicum PutA-membrane associations.
    Zhang W; Krishnan N; Becker DF
    Arch Biochem Biophys; 2006 Jan; 445(1):174-83. PubMed ID: 16310755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of the redox sensor domain of Azotobacter vinelandii NifL at atomic resolution: signaling, dimerization, and mechanism.
    Key J; Hefti M; Purcell EB; Moffat K
    Biochemistry; 2007 Mar; 46(12):3614-23. PubMed ID: 17319691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct linking of metabolism and gene expression in the proline utilization A protein from Escherichia coli.
    Zhou Y; Zhu W; Bellur PS; Rewinkel D; Becker DF
    Amino Acids; 2008 Nov; 35(4):711-8. PubMed ID: 18324349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis.
    Marohnic CC; Crowley LJ; Davis CA; Smith ET; Barber MJ
    Biochemistry; 2005 Feb; 44(7):2449-61. PubMed ID: 15709757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of gene expression by repressor localization: biochemical evidence that membrane and DNA binding by the PutA protein are mutually exclusive.
    Muro-Pastor AM; Ostrovsky P; Maloy S
    J Bacteriol; 1997 Apr; 179(8):2788-91. PubMed ID: 9098084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein.
    Lee YH; Nadaraia S; Gu D; Becker DF; Tanner JJ
    Nat Struct Biol; 2003 Feb; 10(2):109-14. PubMed ID: 12514740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane association of proline dehydrogenase in Escherichia coli is redox dependent.
    Wood JM
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):373-7. PubMed ID: 3540963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and characterization of a 5'-deazaFAD T491V NADPH-cytochrome P450 reductase.
    Zhang H; Gruenke L; Saribas AS; Im SC; Shen AL; Kasper CB; Waskell L
    Biochemistry; 2003 Jun; 42(22):6804-13. PubMed ID: 12779335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery of the Membrane Binding Domain in Trifunctional Proline Utilization A.
    Christgen SL; Zhu W; Sanyal N; Bibi B; Tanner JJ; Becker DF
    Biochemistry; 2017 Nov; 56(47):6292-6303. PubMed ID: 29090935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA.
    Zhou Y; Larson JD; Bottoms CA; Arturo EC; Henzl MT; Jenkins JL; Nix JC; Becker DF; Tanner JJ
    J Mol Biol; 2008 Aug; 381(1):174-88. PubMed ID: 18586269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of Val-265 for flavin adenine dinucleotide (FAD) binding in pyruvate oxidase: FTIR, kinetic, and crystallographic studies on the enzyme variant V265A.
    Wille G; Ritter M; Weiss MS; König S; Mäntele W; Hübner G
    Biochemistry; 2005 Apr; 44(13):5086-94. PubMed ID: 15794646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular dissection of human methionine synthase reductase: determination of the flavin redox potentials in full-length enzyme and isolated flavin-binding domains.
    Wolthers KR; Basran J; Munro AW; Scrutton NS
    Biochemistry; 2003 Apr; 42(13):3911-20. PubMed ID: 12667082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanistic aspects and redox properties of hyperthermophilic L-proline dehydrogenase from Pyrococcus furiosus related to dimethylglycine dehydrogenase/oxidase.
    Monaghan PJ; Leys D; Scrutton NS
    FEBS J; 2007 Apr; 274(8):2070-87. PubMed ID: 17371548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.