These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 12732307)

  • 1. Regulation by proteolysis in bacterial cells.
    Jenal U; Hengge-Aronis R
    Curr Opin Microbiol; 2003 Apr; 6(2):163-72. PubMed ID: 12732307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique degradation signal for ClpCP in Bacillus subtilis.
    Pan Q; Losick R
    J Bacteriol; 2003 Sep; 185(17):5275-8. PubMed ID: 12923101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-dependent proteases that also chaperone protein biogenesis.
    Suzuki CK; Rep M; van Dijl JM; Suda K; Grivell LA; Schatz G
    Trends Biochem Sci; 1997 Apr; 22(4):118-23. PubMed ID: 9149530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the response regulator RssB in sigma recognition and initiation of sigma proteolysis in Escherichia coli.
    Klauck E; Lingnau M; Hengge-Aronis R
    Mol Microbiol; 2001 Jun; 40(6):1381-90. PubMed ID: 11442836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cellular level of the recognition factor RssB is rate-limiting for sigmaS proteolysis: implications for RssB regulation and signal transduction in sigmaS turnover in Escherichia coli.
    Pruteanu M; Hengge-Aronis R
    Mol Microbiol; 2002 Sep; 45(6):1701-13. PubMed ID: 12354235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH.
    Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S
    Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteolysis in prokaryotes: protein quality control and regulatory principles.
    Hengge R; Bukau B
    Mol Microbiol; 2003 Sep; 49(6):1451-62. PubMed ID: 12950913
    [No Abstract]   [Full Text] [Related]  

  • 8. Signal Peptidase Is Necessary and Sufficient for Site 1 Cleavage of RsiV in Bacillus subtilis in Response to Lysozyme.
    Castro AN; Lewerke LT; Hastie JL; Ellermeier CD
    J Bacteriol; 2018 Jun; 200(11):. PubMed ID: 29358498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A regulatory switch involving a Clp ATPase.
    Lazazzera BA; Grossman AD
    Bioessays; 1997 Jun; 19(6):455-8. PubMed ID: 9204762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis.
    Nakano MM; Hajarizadeh F; Zhu Y; Zuber P
    Mol Microbiol; 2001 Oct; 42(2):383-94. PubMed ID: 11703662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of Clp protease activity in modulating the Bacillus subtilissigmaw stress response.
    Zellmeier S; Schumann W; Wiegert T
    Mol Microbiol; 2006 Sep; 61(6):1569-82. PubMed ID: 16899079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serine proteases from two cell types target different components of a complex that governs regulated intramembrane proteolysis of pro-sigmaK during Bacillus subtilis development.
    Zhou R; Kroos L
    Mol Microbiol; 2005 Nov; 58(3):835-46. PubMed ID: 16238631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of a bacterial receptor for lysozyme: binding of lysozyme to the anti-σ factor RsiV controls activation of the ecf σ factor σV.
    Hastie JL; Williams KB; Sepúlveda C; Houtman JC; Forest KT; Ellermeier CD
    PLoS Genet; 2014 Oct; 10(10):e1004643. PubMed ID: 25275625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The response regulator RssB, a recognition factor for sigmaS proteolysis in Escherichia coli, can act like an anti-sigmaS factor.
    Becker G; Klauck E; Hengge-Aronis R
    Mol Microbiol; 2000 Feb; 35(3):657-66. PubMed ID: 10672187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-dependent proteinases in bacteria.
    Hlavácek O; Váchová L
    Folia Microbiol (Praha); 2002; 47(3):203-12. PubMed ID: 12094726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal peptide peptidase- and ClpP-like proteins of Bacillus subtilis required for efficient translocation and processing of secretory proteins.
    Bolhuis A; Matzen A; Hyyryläinen HL; Kontinen VP; Meima R; Chapuis J; Venema G; Bron S; Freudl R; van Dijl JM
    J Biol Chem; 1999 Aug; 274(35):24585-92. PubMed ID: 10455123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MurAA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis in Bacillus subtilis.
    Kock H; Gerth U; Hecker M
    Mol Microbiol; 2004 Feb; 51(4):1087-102. PubMed ID: 14763982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of the secondary sigma factor sigmaX in Streptococcus pyogenes is restricted at two levels.
    Opdyke JA; Scott JR; Moran CP
    J Bacteriol; 2003 Aug; 185(15):4291-7. PubMed ID: 12867436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ClpXP protease regulates the signal peptide cleavage of secretory preproteins in Bacillus subtilis with a mechanism distinct from that of the Ecs ABC transporter.
    Pummi T; Leskelä S; Wahlström E; Gerth U; Tjalsma H; Hecker M; Sarvas M; Kontinen VP
    J Bacteriol; 2002 Feb; 184(4):1010-8. PubMed ID: 11807061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation.
    Msadek T; Dartois V; Kunst F; Herbaud ML; Denizot F; Rapoport G
    Mol Microbiol; 1998 Mar; 27(5):899-914. PubMed ID: 9535081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.