BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12732312)

  • 1. The top genes: on the distance from transcript to function in yeast glycolysis.
    Fraenkel DG
    Curr Opin Microbiol; 2003 Apr; 6(2):198-201. PubMed ID: 12732312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression.
    Rautio JJ; Huuskonen A; Vuokko H; Vidgren V; Londesborough J
    Yeast; 2007 Sep; 24(9):741-60. PubMed ID: 17605133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae).
    Chambers A; Packham EA; Graham IR
    Curr Genet; 1995 Dec; 29(1):1-9. PubMed ID: 8595651
    [No Abstract]   [Full Text] [Related]  

  • 4. Gts1p stabilizes oscillations in energy metabolism by activating the transcription of TPS1 encoding trehalose-6-phosphate synthase 1 in the yeast Saccharomyces cerevisiae.
    Xu Z; Yaguchi S; Tsurugi K
    Biochem J; 2004 Oct; 383(Pt 1):171-8. PubMed ID: 15228382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of HAM1 gene detoxifies 5-bromodeoxyuridine in the yeast Saccharomyces cerevisiae.
    Takayama S; Fujii M; Kurosawa A; Adachi N; Ayusawa D
    Curr Genet; 2007 Nov; 52(5-6):203-11. PubMed ID: 17899088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered Reversal of Function in Glycolytic Yeast Promoters.
    Rajkumar AS; Özdemir E; Lis AV; Schneider K; Qin J; Jensen MK; Keasling JD
    ACS Synth Biol; 2019 Jun; 8(6):1462-1468. PubMed ID: 31051075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the glycolytic flux in Saccharomyces cerevisiae grown at low temperature: a multi-level analysis in anaerobic chemostat cultures.
    Tai SL; Daran-Lapujade P; Luttik MA; Walsh MC; Diderich JA; Krijger GC; van Gulik WM; Pronk JT; Daran JM
    J Biol Chem; 2007 Apr; 282(14):10243-51. PubMed ID: 17251183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the impact of osmoadaptation on glycolysis using time-varying response-coefficients.
    Kühn C; Petelenz E; Nordlander B; Schaber J; Hohmann S; Klipp E
    Genome Inform; 2008; 20():77-90. PubMed ID: 19425124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resveratrol increases glycolytic flux in Saccharomyces cerevisiae via a SNF1-dependet mechanism.
    Madrigal-Perez LA; Nava GM; González-Hernández JC; Ramos-Gomez M
    J Bioenerg Biomembr; 2015 Aug; 47(4):331-6. PubMed ID: 26091703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limitations of codon adaptation index and other coding DNA-based features for prediction of protein expression in Saccharomyces cerevisiae.
    Friberg M; von Rohr P; Gonnet G
    Yeast; 2004 Oct; 21(13):1083-93. PubMed ID: 15484285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur sparing in the yeast proteome in response to sulfur demand.
    Fauchon M; Lagniel G; Aude JC; Lombardia L; Soularue P; Petat C; Marguerie G; Sentenac A; Werner M; Labarre J
    Mol Cell; 2002 Apr; 9(4):713-23. PubMed ID: 11983164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirement of Nhp6 proteins for transcription of a subset of tRNA genes and heterochromatin barrier function in Saccharomyces cerevisiae.
    Braglia P; Dugas SL; Donze D; Dieci G
    Mol Cell Biol; 2007 Mar; 27(5):1545-57. PubMed ID: 17178828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of the GTS1 gene product with glyceraldehyde- 3-phosphate dehydrogenase 1 required for the maintenance of the metabolic oscillations of the yeast Saccharomyces cerevisiae.
    Liu W; Wang J; Mitsui K; Shen H; Tsurugi K
    Eur J Biochem; 2002 Jul; 269(14):3560-9. PubMed ID: 12135496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation.
    Mendes-Ferreira A; del Olmo M; García-Martínez J; Jiménez-Martí E; Leão C; Mendes-Faia A; Pérez-Ortín JE
    Appl Environ Microbiol; 2007 Aug; 73(16):5363-9. PubMed ID: 17601813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae.
    Rothfels K; Tanny JC; Molnar E; Friesen H; Commisso C; Segall J
    Mol Cell Biol; 2005 Aug; 25(15):6772-88. PubMed ID: 16024810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional and post-transcriptional regulation of autophagy in the yeast
    Delorme-Axford E; Klionsky DJ
    J Biol Chem; 2018 Apr; 293(15):5396-5403. PubMed ID: 29371397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructing genetic networks in yeast.
    Zhang Z; Gerstein M
    Nat Biotechnol; 2003 Nov; 21(11):1295-7. PubMed ID: 14595359
    [No Abstract]   [Full Text] [Related]  

  • 19. Identification of differentially expressed genes in yeast Saccharomyces cerevisiae cells with inactivated Mmf1p and Hmf1p, members of proteins family YERO57c/YJGF.
    Pozdniakovaite N; Popendikyte V
    Dev Growth Differ; 2004 Dec; 46(6):545-54. PubMed ID: 15610144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of glycolysis by casein kinase I (Rag8p) in Kluyveromyces lactis involves a DNA-binding protein, Sck1p, a homologue of Sgc1p of Saccharomyces cerevisiae.
    Lemaire M; Guyon A; Betina S; Wésolowski-Louvel M
    Curr Genet; 2002 Mar; 40(6):355-64. PubMed ID: 11919674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.