BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12732422)

  • 41. Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site.
    Siles JA; Margesin R
    Appl Microbiol Biotechnol; 2018 May; 102(10):4409-4421. PubMed ID: 29594357
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons.
    Leys NM; Ryngaert A; Bastiaens L; Wattiau P; Top EM; Verstraete W; Springael D
    FEMS Microbiol Ecol; 2005 Feb; 51(3):375-88. PubMed ID: 16329885
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of bacterial composition and diversity in a long-term petroleum contaminated soil and isolation of high-efficiency alkane-degrading strains using an improved medium.
    Zheng J; Feng JQ; Zhou L; Mbadinga SM; Gu JD; Mu BZ
    World J Microbiol Biotechnol; 2018 Feb; 34(2):34. PubMed ID: 29426982
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation.
    Sun W; Li J; Jiang L; Sun Z; Fu M; Peng X
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8751-64. PubMed ID: 26078113
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Response of bacterial community during bioremediation of an oil-polluted soil.
    Zucchi M; Angiolini L; Borin S; Brusetti L; Dietrich N; Gigliotti C; Barbieri P; Sorlini C; Daffonchio D
    J Appl Microbiol; 2003; 94(2):248-57. PubMed ID: 12534816
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.
    Aleer S; Adetutu EM; Weber J; Ball AS; Juhasz AL
    J Environ Manage; 2014 Apr; 136():27-36. PubMed ID: 24553295
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Utility of lipid biomarkers in support of bioremediation efforts at army sites.
    Ringelberg D; Richmond M; Foley K; Reynolds C
    J Microbiol Methods; 2008 Jul; 74(1):17-25. PubMed ID: 17714813
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR.
    Mesarch MB; Nakatsu CH; Nies L
    Appl Environ Microbiol; 2000 Feb; 66(2):678-83. PubMed ID: 10653735
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Microbial Community Structure Shift During Bioremediation of Petroleum Contaminated Soil Using High Throughput Sequencing].
    Qi YY; Wu ML; Zhu CC; Ye XQ; Xu HN
    Huan Jing Ke Xue; 2019 Feb; 40(2):869-875. PubMed ID: 30628355
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial Degradation of Phenanthrene in Pristine and Contaminated Sandy Soils.
    Schwarz A; Adetutu EM; Juhasz AL; Aburto-Medina A; Ball AS; Shahsavari E
    Microb Ecol; 2018 May; 75(4):888-902. PubMed ID: 29080101
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial changes in rhizospheric soils contaminated with petroleum hydrocarbons after bioremediation.
    Lin X; Li PJ; Zhou QX; Xu HX; Zhang HR
    J Environ Sci (China); 2004; 16(6):987-90. PubMed ID: 15900734
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils.
    Wolf DC; Cryder Z; Gan J
    Chemosphere; 2019 Sep; 231():93-102. PubMed ID: 31128356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nutritional additives dominance in driving the bacterial communities succession and bioremediation of hydrocarbon and heavy metal contaminated soil microcosms.
    Cavazzoli S; Squartini A; Sinkkonen A; Romantschuk M; Rantalainen AL; Selonen V; Roslund MI
    Microbiol Res; 2023 May; 270():127343. PubMed ID: 36841130
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil.
    Qin X; Tang JC; Li DS; Zhang QM
    Lett Appl Microbiol; 2012 Sep; 55(3):210-7. PubMed ID: 22725670
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Re-use of remediated soils for the bioremediation of waste oil sludge.
    Makadia TH; Adetutu EM; Simons KL; Jardine D; Sheppard PJ; Ball AS
    J Environ Manage; 2011 Mar; 92(3):866-71. PubMed ID: 21115217
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study.
    Trindade PV; Sobral LG; Rizzo AC; Leite SG; Soriano AU
    Chemosphere; 2005 Jan; 58(4):515-22. PubMed ID: 15620743
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of Crude Oil Degrading Bacteria Isolated from Contaminated Soils Surrounding Gas Stations.
    Abou-Shanab RA; Eraky M; Haddad AM; Abdel-Gaffar AB; Salem AM
    Bull Environ Contam Toxicol; 2016 Nov; 97(5):684-688. PubMed ID: 27655077
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils.
    Mahmoudi N; Slater GF; Fulthorpe RR
    Can J Microbiol; 2011 Aug; 57(8):623-8. PubMed ID: 21815819
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: a mini-review.
    Shahi A; Ince B; Aydin S; Ince O
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4341-4348. PubMed ID: 28500385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil.
    Ritchie NJ; Schutter ME; Dick RP; Myrold DD
    Appl Environ Microbiol; 2000 Apr; 66(4):1668-75. PubMed ID: 10742258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.