These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 12732506)
1. Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses. Butko P Appl Environ Microbiol; 2003 May; 69(5):2415-22. PubMed ID: 12732506 [No Abstract] [Full Text] [Related]
2. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Bravo A; Gill SS; Soberón M Toxicon; 2007 Mar; 49(4):423-35. PubMed ID: 17198720 [TBL] [Abstract][Full Text] [Related]
3. A novel Bacillus thuringiensis strain LLB6, isolated from bryophytes, and its new cry2Ac-type gene. Zhang LL; Lin J; Luo L; Guan CY; Zhang QL; Guan Y; Zhang Y; Ji JT; Huang ZP; Guan X Lett Appl Microbiol; 2007 Mar; 44(3):301-7. PubMed ID: 17309508 [TBL] [Abstract][Full Text] [Related]
4. Cyt1A from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae). Wirth MC; Federici BA; Walton WE Appl Environ Microbiol; 2000 Mar; 66(3):1093-7. PubMed ID: 10698776 [TBL] [Abstract][Full Text] [Related]
5. Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryIIIB2 and CryIIIB2 domain I peptide. Von Tersch MA; Slatin SL; Kulesza CA; English LH Appl Environ Microbiol; 1994 Oct; 60(10):3711-7. PubMed ID: 7527203 [TBL] [Abstract][Full Text] [Related]
6. The mode of action of Bacillus thuringiensis endotoxins. Gill SS; Cowles EA; Pietrantonio PV Annu Rev Entomol; 1992; 37():615-36. PubMed ID: 1311541 [No Abstract] [Full Text] [Related]
7. Molecular cloning and characterization of a novel mosquitocidal protein gene from Bacillus thuringiensis subsp. fukuokaensis. Lee HK; Gill SS Appl Environ Microbiol; 1997 Dec; 63(12):4664-70. PubMed ID: 9406385 [TBL] [Abstract][Full Text] [Related]
8. Deletion of the Cry11A or the Cyt1A toxin from Bacillus thuringiensis subsp. israelensis: effect on toxicity against resistant Culex quinquefasciatus (Diptera: Culicidae). Wirth MC; Walton WE; Delécluse A J Invertebr Pathol; 2003 Feb; 82(2):133-5. PubMed ID: 12623314 [No Abstract] [Full Text] [Related]
9. Structural and functional studies of alpha-helix 5 region from Bacillus thuringiensis Cry1Ab delta-endotoxin. Nuñez-Valdez M; Sánchez J; Lina L; Güereca L; Bravo A Biochim Biophys Acta; 2001 Mar; 1546(1):122-31. PubMed ID: 11257515 [TBL] [Abstract][Full Text] [Related]
10. Bacillus thuringiensis insecticidal proteins: molecular mode of action. Rajamohan F; Lee MK; Dean DH Prog Nucleic Acid Res Mol Biol; 1998; 60():1-27. PubMed ID: 9594569 [TBL] [Abstract][Full Text] [Related]
11. Recombinant strain of Bacillus thuringiensis producing Cyt1A, Cry11B, and the Bacillus sphaericus binary toxin. Park HW; Bideshi DK; Federici BA Appl Environ Microbiol; 2003 Feb; 69(2):1331-4. PubMed ID: 12571069 [TBL] [Abstract][Full Text] [Related]
12. Redesigning Bacillus thuringiensis Cry1Aa toxin into a mosquito toxin. Liu XS; Dean DH Protein Eng Des Sel; 2006 Mar; 19(3):107-11. PubMed ID: 16436453 [TBL] [Abstract][Full Text] [Related]
13. Potential Prepore Trimer Formation by the Bacillus thuringiensis Mosquito-specific Toxin: MOLECULAR INSIGHTS INTO A CRITICAL PREREQUISITE OF MEMBRANE-BOUND MONOMERS. Sriwimol W; Aroonkesorn A; Sakdee S; Kanchanawarin C; Uchihashi T; Ando T; Angsuthanasombat C J Biol Chem; 2015 Aug; 290(34):20793-20803. PubMed ID: 26112409 [TBL] [Abstract][Full Text] [Related]
14. Structure, function and engineering of Bacillus thuringiensis toxins. Thompson MA; Schnepf HE; Feitelson JS Genet Eng (N Y); 1995; 17():99-117. PubMed ID: 7779517 [TBL] [Abstract][Full Text] [Related]
15. Identification of a gene for Cyt1A-like hemolysin from Bacillus thuringiensis subsp. medellin and expression in a crystal-negative B. thuringiensis strain. Thiery I; Delécluse A; Tamayo MC; Orduz S Appl Environ Microbiol; 1997 Feb; 63(2):468-73. PubMed ID: 9023925 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a new Bacillus thuringiensis endotoxin, Cry47Aa, from strains that are toxic to the Australian sheep blowfly, Lucilia cuprina. Kongsuwan K; Gough J; Kemp D; McDevitt A; Akhurst R FEMS Microbiol Lett; 2005 Nov; 252(1):127-36. PubMed ID: 16168574 [TBL] [Abstract][Full Text] [Related]
17. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. Jenkins JL; Dean DH Genet Eng (N Y); 2000; 22():33-54. PubMed ID: 11501380 [No Abstract] [Full Text] [Related]
18. Models for the structure and function of the Bacillus thuringiensis delta-endotoxins determined by compilational analysis. Hodgman TC; Ellar DJ DNA Seq; 1990; 1(2):97-106. PubMed ID: 1966871 [TBL] [Abstract][Full Text] [Related]
19. A detergent-like mechanism of action of the cytolytic toxin Cyt1A from Bacillus thuringiensis var. israelensis. Manceva SD; Pusztai-Carey M; Russo PS; Butko P Biochemistry; 2005 Jan; 44(2):589-97. PubMed ID: 15641784 [TBL] [Abstract][Full Text] [Related]
20. N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. Burton SL; Ellar DJ; Li J; Derbyshire DJ J Mol Biol; 1999 Apr; 287(5):1011-22. PubMed ID: 10222207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]