These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 12732950)

  • 1. Involvement of glycine and aspartate residues in the binding capacity of FAD in the NADH dehydrogenase from an alkaliphilic Bacillus.
    Shiraki M; Koyama N
    Curr Microbiol; 2003 Jun; 46(6):432-4. PubMed ID: 12732950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of Lys-308 in the FAD-dependent oxidase activity of NADH dehydrogenase from an alkaliphilic Bacillus.
    Kitazume Y; Mutoh M; Shiraki M; Koyama N
    Res Microbiol; 2006 Dec; 157(10):956-9. PubMed ID: 17097855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginine-42 and threonine-45 are required for FAD incorporation and catalytic activity in human monoamine oxidase B.
    Kirksey TJ; Kwan SW; Abell CW
    Biochemistry; 1998 Sep; 37(35):12360-6. PubMed ID: 9724550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissection of the structural determinants involved in formation of the dimeric form of D-amino acid oxidase from Rhodotorula gracilis: role of the size of the betaF5-betaF6 loop.
    Piubelli L; Molla G; Caldinelli L; Pilone MS; Pollegioni L
    Protein Eng; 2003 Dec; 16(12):1063-9. PubMed ID: 14983088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutagenesis study of the 2Fe-2S center and the FAD binding site of the Na(+)-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae.
    Barquera B; Nilges MJ; Morgan JE; Ramirez-Silva L; Zhou W; Gennis RB
    Biochemistry; 2004 Sep; 43(38):12322-30. PubMed ID: 15379571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxide reductase activity of NADH dehydrogenase of an alkaliphilic Bacillus in the presence of a 22-kDa protein component from Amphibacillus xylanus.
    Koyama N; Koitabashi T; Niimura Y; Massey V
    Biochem Biophys Res Commun; 1998 Jun; 247(3):659-62. PubMed ID: 9647749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of threonine-136 and glutamate-137 of human medium chain acyl-CoA dehydrogenase in FAD binding and peptide folding using site-directed mutagenesis: creation of an FAD-dependent mutant, T136D.
    Saijo T; Kim JJ; Kuroda Y; Tanaka K
    Arch Biochem Biophys; 1998 Oct; 358(1):49-57. PubMed ID: 9750163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of the conserved threonine, tryptophan, and lysine residues in the starch-binding domain of Bacillus sp. strain TS-23 alpha-amylase.
    Lo HF; Chiang WY; Chi MC; Hu HY; Lin LL
    Curr Microbiol; 2004 Apr; 48(4):280-4. PubMed ID: 15057453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperactive mutants of mouse D-aspartate oxidase: mutagenesis of the active site residue serine 308.
    Katane M; Hanai T; Furuchi T; Sekine M; Homma H
    Amino Acids; 2008 Jun; 35(1):75-82. PubMed ID: 18235994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residues threonine 346 and leucine 352 are critical for the proper function of Bacillus kaustophilus leucine aminopeptidase.
    Chi MC; Huang HB; Liu JS; Wang WC; Liang WC; Lin LL
    FEMS Microbiol Lett; 2006 Jul; 260(2):156-61. PubMed ID: 16842339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of three essential residues in the conserved ATP-binding region of Epstein-Barr virus thymidine kinase.
    Wu CC; Hsu TY; Chen JY
    Biochemistry; 2005 Mar; 44(12):4785-93. PubMed ID: 15779905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The occurrence of a novel NADH dehydrogenase, distinct from the old yellow enzyme, in Gluconobacter strains.
    Shinagawa E; Ano Y; Adachi O; Matsushita K
    Biosci Biotechnol Biochem; 2008 Jan; 72(1):260-4. PubMed ID: 18175896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis of the Asp-197 and Asp-202 residues in chitinase A1 of Bacillus circulans WL-12.
    Watanabe T; Uchida M; Kobori K; Tanaka H
    Biosci Biotechnol Biochem; 1994 Dec; 58(12):2283-5. PubMed ID: 7765724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient screening for new amino acid dehydrogenase activity: directed evolution of Bacillus sphaericus phenylalanine dehydrogenase towards activity with an unsaturated non-natural amino acid.
    Chen S; Engel PC
    J Biotechnol; 2009 Jun; 142(2):127-34. PubMed ID: 19501264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia.
    Yamaoka H; Yamashita Y; Ferri S; Sode K
    Biotechnol Lett; 2008 Nov; 30(11):1967-72. PubMed ID: 18581061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.
    Meyer S; Scrima A; Versées W; Wittinghofer A
    J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a highly conserved FAD-binding site in human monoamine oxidase B.
    Zhou BP; Wu B; Kwan SW; Abell CW
    J Biol Chem; 1998 Jun; 273(24):14862-8. PubMed ID: 9614088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein.
    Konas DW; Takaya N; Sharma M; Stuehr DJ
    Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.