These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12733935)

  • 1. Long-range electron transfer through monolayers and bilayers of alkanethiols in electrochemically controlled Hg[bond]neling junctions.
    York RL; Nguyen PT; Slowinski K
    J Am Chem Soc; 2003 May; 125(19):5948-53. PubMed ID: 12733935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of headgroup on electrical conductivity of self-assembled monolayers on mercury: n-alkanethiols versus n-alkaneselenols.
    Adaligil E; Shon YS; Slowinski K
    Langmuir; 2010 Feb; 26(3):1570-3. PubMed ID: 20000324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying electron transfer through alkanethiol self-assembled monolayers on a hanging mercury drop electrode using potentiometric measurements.
    Cohen-Atiya M; Mandler D
    Phys Chem Chem Phys; 2006 Oct; 8(38):4405-9. PubMed ID: 17001407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of permanent dipole moments of adsorbates upon I-V characteristics of a bilayer tunneling junction between self-assembled monolayers on an Au(111) substrate and a gold tip.
    Senda T; Wakamatsu S; Nakasa A; Akiba U; Fujihira M
    Ultramicroscopy; 2003; 97(1-4):27-33. PubMed ID: 12801654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox site-mediated charge transport in a Hg-SAM//Ru(NH(3))(6)(3+/2+)//SAM-Hg junction with a dynamic interelectrode separation: compatibility with redox cycling and electron hopping mechanisms.
    Tran E; Cohen AE; Murray RW; Rampi MA; Whitesides GM
    J Am Chem Soc; 2009 Feb; 131(6):2141-50. PubMed ID: 19161329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: effect of metal work function and applied bias on tunneling efficiency and contact resistance.
    Engelkes VB; Beebe JM; Frisbie CD
    J Am Chem Soc; 2004 Nov; 126(43):14287-96. PubMed ID: 15506797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular electron transport changes upon structural phase transitions in alkanethiol molecular junctions.
    Seo K; Lee H
    ACS Nano; 2009 Sep; 3(9):2469-76. PubMed ID: 19670880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemically assisted self-assembly of alkylthiosulfates and alkanethiols on gold: the role of gold oxide formation and corrosion.
    Pillai RG; Braun MD; Freund MS
    Langmuir; 2010 Jan; 26(1):269-76. PubMed ID: 20038173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle-mediated electron transfer across ultrathin self-assembled films.
    Zhao J; Bradbury CR; Huclova S; Potapova I; Carrara M; Fermín DJ
    J Phys Chem B; 2005 Dec; 109(48):22985-94. PubMed ID: 16853995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inelastic electron tunneling spectroscopy of alkane monolayers with dissimilar attachment chemistry to gold.
    Long DP; Troisi A
    J Am Chem Soc; 2007 Dec; 129(49):15303-10. PubMed ID: 17997556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of hydrogen formation induced by low-energy electron irradiation of hexadecanethiol self-assembled monolayers.
    Garand E; Rowntree PA
    J Phys Chem B; 2005 Jul; 109(26):12927-34. PubMed ID: 16852605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ deprotection and assembly of s-tritylalkanethiols on gold yields monolayers comparable to those prepared directly from alkanethiols.
    Inman CE; Reed SM; Hutchison JE
    Langmuir; 2004 Oct; 20(21):9144-50. PubMed ID: 15461499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Odd-even effects in charge transport across self-assembled monolayers.
    Thuo MM; Reus WF; Nijhuis CA; Barber JR; Kim C; Schulz MD; Whitesides GM
    J Am Chem Soc; 2011 Mar; 133(9):2962-75. PubMed ID: 21323319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of the interplay between long-range electron transfer and redox probe permeation at self-assembled monolayers: evidence for potential-induced ion gating.
    Calvente JJ; López-Pérez G; Ramírez P; Fernández H; Zón MA; Mulder WH; Andreu R
    J Am Chem Soc; 2005 May; 127(17):6476-86. PubMed ID: 15853356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the tip-loading force-dependent tunneling behavior in alkanethiol metal-molecule-metal junctions by conducting atomic force microscopy.
    Song H; Lee H; Lee T
    Ultramicroscopy; 2008 Sep; 108(10):1196-9. PubMed ID: 18547728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkanethiols on platinum: multicomponent self-assembled monolayers.
    Petrovykh DY; Kimura-Suda H; Opdahl A; Richter LJ; Tarlov MJ; Whitman LJ
    Langmuir; 2006 Mar; 22(6):2578-87. PubMed ID: 16519457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linker effects on monolayer formation and long-range electron transfer in helical peptide monolayers.
    Arikuma Y; Takeda K; Morita T; Ohmae M; Kimura S
    J Phys Chem B; 2009 May; 113(18):6256-66. PubMed ID: 19361180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol-terminated monolayers on oxide-free Si: assembly of semiconductor-alkyl-S-metal junctions.
    Böcking T; Salomon A; Cahen D; Gooding JJ
    Langmuir; 2007 Mar; 23(6):3236-41. PubMed ID: 17266341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold single-crystal electrode surface modified with self-assembled monolayers for electron tunneling with bilirubin oxidase.
    Tominaga M; Ohtani M; Taniguchi I
    Phys Chem Chem Phys; 2008 Dec; 10(46):6928-34. PubMed ID: 19030587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contacting organic molecules by soft methods: towards molecule-based electronic devices.
    Haick H; Cahen D
    Acc Chem Res; 2008 Mar; 41(3):359-66. PubMed ID: 18232664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.