These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12733997)

  • 1. Combined optical trapping and single-molecule fluorescence.
    Lang MJ; Fordyce PM; Block SM
    J Biol; 2003; 2(1):6. PubMed ID: 12733997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous, coincident optical trapping and single-molecule fluorescence.
    Lang MJ; Fordyce PM; Engh AM; Neuman KC; Block SM
    Nat Methods; 2004 Nov; 1(2):133-9. PubMed ID: 15782176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlaced optical force-fluorescence measurements for single molecule biophysics.
    Brau RR; Tarsa PB; Ferrer JM; Lee P; Lang MJ
    Biophys J; 2006 Aug; 91(3):1069-77. PubMed ID: 16648165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Resolution Optical Tweezers Combined with Multicolor Single-Molecule Microscopy.
    Yadav R; Senanayake KB; Comstock MJ
    Methods Mol Biol; 2022; 2478():141-240. PubMed ID: 36063322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh-resolution optical trap with single-fluorophore sensitivity.
    Comstock MJ; Ha T; Chemla YR
    Nat Methods; 2011 Apr; 8(4):335-40. PubMed ID: 21336286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zero-mode waveguides for single-molecule analysis at high concentrations.
    Levene MJ; Korlach J; Turner SW; Foquet M; Craighead HG; Webb WW
    Science; 2003 Jan; 299(5607):682-6. PubMed ID: 12560545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetic trapping at the one nanometer limit.
    Fields AP; Cohen AE
    Proc Natl Acad Sci U S A; 2011 May; 108(22):8937-42. PubMed ID: 21562206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical traps induce fluorophore photobleaching by two-photon excitation.
    Lu S; Chemla YR
    Biophys J; 2023 Nov; 122(22):4316-4325. PubMed ID: 37828742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution dual-trap optical tweezers with differential detection: instrument design.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.ip73. PubMed ID: 20147038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection.
    Whitley KD; Comstock MJ; Chemla YR
    Methods Mol Biol; 2017; 1486():183-256. PubMed ID: 27844430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip.
    Kühn S; Phillips BS; Lunt EJ; Hawkins AR; Schmidt H
    Lab Chip; 2010 Jan; 10(2):189-94. PubMed ID: 20066246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy.
    Li H; Zhou D; Browne H; Klenerman D
    J Am Chem Soc; 2006 May; 128(17):5711-7. PubMed ID: 16637638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single molecule measurements and biological motors.
    Knight AE; Mashanov G; Molloy JE
    Eur Biophys J; 2005 Dec; 35(1):89. PubMed ID: 16136326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientational and dynamical heterogeneity of rhodamine 6G terminally attached to a DNA helix revealed by NMR and single-molecule fluorescence spectroscopy.
    Neubauer H; Gaiko N; Berger S; Schaffer J; Eggeling C; Tuma J; Verdier L; Seidel CA; Griesinger C; Volkmer A
    J Am Chem Soc; 2007 Oct; 129(42):12746-55. PubMed ID: 17900110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy.
    Hosokawa C; Yoshikawa H; Masuhara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021408. PubMed ID: 16196566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined High-Resolution Optical Tweezers and Multicolor Single-Molecule Fluorescence with an Automated Single-Molecule Assembly Line.
    Chuang CY; Zammit M; Whitmore ML; Comstock MJ
    J Phys Chem A; 2019 Nov; 123(44):9612-9620. PubMed ID: 31621318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy.
    Sirinakis G; Ren Y; Gao Y; Xi Z; Zhang Y
    Rev Sci Instrum; 2012 Sep; 83(9):093708. PubMed ID: 23020384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force-fluorescence spectroscopy at the single-molecule level.
    Zhou R; Schlierf M; Ha T
    Methods Enzymol; 2010; 475():405-26. PubMed ID: 20627166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1.
    Bennink ML; Schärer OD; Kanaar R; Sakata-Sogawa K; Schins JM; Kanger JS; de Grooth BG; Greve J
    Cytometry; 1999 Jul; 36(3):200-8. PubMed ID: 10404969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.