These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12734693)

  • 1. Microbial iron respiration: impacts on corrosion processes.
    Lee AK; Newman DK
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):134-9. PubMed ID: 12734693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.
    Zuo R; Wood TK
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):747-53. PubMed ID: 15278311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial iron respiration can protect steel from corrosion.
    Dubiel M; Hsu CH; Chien CC; Mansfeld F; Newman DK
    Appl Environ Microbiol; 2002 Mar; 68(3):1440-5. PubMed ID: 11872499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dynamics of successive changes in sulphidogenic microbial association under the conditions of formation of the biofilm on steel surface].
    Purish LM; Asaulenko LH
    Mikrobiol Z; 2007; 69(6):19-25. PubMed ID: 18380176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.
    Zuo R; Ornek D; Syrett BC; Green RM; Hsu CH; Mansfeld FB; Wood TK
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):275-83. PubMed ID: 12898064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Stages of biofilm formation by sulfate-reducing bacteria].
    Asaulenko LH; Purishch LM; Kozlova IP
    Mikrobiol Z; 2004; 66(3):72-9. PubMed ID: 15456221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of metallic corrosion through microbiological route.
    Maruthamuthu S; Ponmariappan S; Mohanan S; Palaniswamy N; Palaniappan R; Rengaswamy NS
    Indian J Exp Biol; 2003 Sep; 41(9):1023-9. PubMed ID: 15242295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Microorganisms in heat supply lines and internal corrosion of steel pipes].
    Rozanova EP; Dubinina GA; Lebedeva EV; Suntsova LA; Lipovskikh VM; Tsvetkov NN
    Mikrobiologiia; 2003; 72(2):212-20. PubMed ID: 12751246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species.
    Morikawa M
    J Biosci Bioeng; 2006 Jan; 101(1):1-8. PubMed ID: 16503283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrosion protection by anaerobiosis.
    Volkland HP; Harms H; Wanner ; Zehnder AJ
    Water Sci Technol; 2001; 44(8):103-6. PubMed ID: 11730124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of the biofilm biopolymers on the microbial corrosion rate of the low-carbon steel].
    Borets'ka MO; Kozlova IP
    Mikrobiol Z; 2007; 69(4):40-4. PubMed ID: 17977451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative transcriptome analysis of Desulfovibrio vulgaris grown in planktonic culture and mature biofilm on a steel surface.
    Zhang W; Culley DE; Nie L; Scholten JC
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):447-57. PubMed ID: 17571259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilms: strategies for metal corrosion inhibition employing microorganisms.
    Zuo R
    Appl Microbiol Biotechnol; 2007 Oct; 76(6):1245-53. PubMed ID: 17701408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism.
    Lopes FA; Morin P; Oliveira R; Melo LF
    J Appl Microbiol; 2006 Nov; 101(5):1087-95. PubMed ID: 17040232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocidal effect of cathodic protection on bacterial viability in biofilm attached to carbon steel.
    Miyanaga K; Terashi R; Kawai H; Unno H; Tanji Y
    Biotechnol Bioeng; 2007 Jul; 97(4):850-7. PubMed ID: 17163515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of nutrient release from iron metal for microbial regrowth in water distribution systems.
    Morton SC; Zhang Y; Edwards MA
    Water Res; 2005 Aug; 39(13):2883-92. PubMed ID: 16029882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants.
    Ashassi-Sorkhabi H; Moradi-Haghighi M; Zarrini G; Javaherdashti R
    Biodegradation; 2012 Feb; 23(1):69-79. PubMed ID: 21695454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biofilm on a metal surface as a factor of microbial corrosion].
    Borets'ka MO; Kozlova IP
    Mikrobiol Z; 2010; 72(3):57-65. PubMed ID: 20695231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of 'green' strategies to prevent or mitigate microbiologically influenced corrosion.
    Little B; Lee J; Ray R
    Biofouling; 2007; 23(1-2):87-97. PubMed ID: 17453733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system.
    Sun H; Shi B; Lytle DA; Bai Y; Wang D
    Environ Sci Process Impacts; 2014 Mar; 16(3):576-85. PubMed ID: 24509822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.