These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 12734817)

  • 1. Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy.
    Pezzotti G; Sakakura S
    J Biomed Mater Res A; 2003 May; 65(2):229-36. PubMed ID: 12734817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From brittle to ductile fracture of bone.
    Peterlik H; Roschger P; Klaushofer K; Fratzl P
    Nat Mater; 2006 Jan; 5(1):52-5. PubMed ID: 16341218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro- and nano-structural analyses of damage in bone.
    Sahar ND; Hong SI; Kohn DH
    Micron; 2005; 36(7-8):617-29. PubMed ID: 16169739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of failure characteristics of a range of cancellous bone-bone cement composites.
    Lucksanasombool P; Higgs WA; Ignat M; Higgs RJ; Swain MV
    J Biomed Mater Res A; 2003 Jan; 64(1):93-104. PubMed ID: 12483701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the origin of the toughness of mineralized tissue: microcracking or crack bridging?
    Nalla RK; Kruzic JJ; Ritchie RO
    Bone; 2004 May; 34(5):790-8. PubMed ID: 15121010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fracture mechanics of fatigue crack propagation in compact bone.
    Wright TM; Hayes WC
    J Biomed Mater Res; 1976 Jul; 10(4):637-48. PubMed ID: 947925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone micro-fragility caused by the mimetic aging processes in α-klotho deficient mice: in situ nanoindentation assessment of dilatational bands.
    Maruyama N; Shibata Y; Mochizuki A; Yamada A; Maki K; Inoue T; Kamijo R; Miyazaki T
    Biomaterials; 2015 Apr; 47():62-71. PubMed ID: 25682161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic fracture criteria for the failure of human cortical bone.
    Nalla RK; Kinney JH; Ritchie RO
    Nat Mater; 2003 Mar; 2(3):164-8. PubMed ID: 12612673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fracture resistance curves and toughening mechanisms in polymer based dental composites.
    De Souza JA; Goutianos S; Skovgaard M; Sørensen BF
    J Mech Behav Biomed Mater; 2011 May; 4(4):558-71. PubMed ID: 21396605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements.
    Vashishth D
    J Biomech; 2004 Jun; 37(6):943-6. PubMed ID: 15111083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioceramics: A concrete solution.
    Troczynski T
    Nat Mater; 2004 Jan; 3(1):13-4. PubMed ID: 14704779
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of aging on the toughness of human cortical bone: evaluation by R-curves.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Bone; 2004 Dec; 35(6):1240-6. PubMed ID: 15589205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loading rate effects on the R-curve behavior of cortical bone.
    Kulin RM; Jiang F; Vecchio KS
    Acta Biomater; 2011 Feb; 7(2):724-32. PubMed ID: 20883834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromechanisms of fatigue crack initiation and propagation in bone cements.
    Bhambri SK; Gilbertson LN
    J Biomed Mater Res; 1995 Feb; 29(2):233-7. PubMed ID: 7738071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow crack growth behaviour of hydroxyapatite ceramics.
    Benaqqa C; Chevalier J; Saädaoui M; Fantozzi G
    Biomaterials; 2005 Nov; 26(31):6106-12. PubMed ID: 15890401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A methodology for the investigation of toughness and crack propagation in mouse bone.
    Carriero A; Zimmermann EA; Shefelbine SJ; Ritchie RO
    J Mech Behav Biomed Mater; 2014 Nov; 39():38-47. PubMed ID: 25084121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural evaluation of human and sheep bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy.
    Rehman I; Smith R; Hench LL; Bonfield W
    J Biomed Mater Res; 1995 Oct; 29(10):1287-94. PubMed ID: 8557731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fracture in human cortical bone: local fracture criteria and toughening mechanisms.
    Nalla RK; Stölken JS; Kinney JH; Ritchie RO
    J Biomech; 2005 Jul; 38(7):1517-25. PubMed ID: 15922763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds.
    Kong L; Gao Y; Cao W; Gong Y; Zhao N; Zhang X
    J Biomed Mater Res A; 2005 Nov; 75(2):275-82. PubMed ID: 16044404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.