BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 12734825)

  • 1. Dissolution properties of calcium phosphate granules with different compositions in simulated body fluid.
    Monteiro MM; Campos da Rocha NC; Rossi AM; de Almeida Soares G
    J Biomed Mater Res A; 2003 May; 65(2):299-305. PubMed ID: 12734825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and bioactivity studies of albumin onto hydroxyapatite surface.
    Mavropoulos E; Costa AM; Costa LT; Achete CA; Mello A; Granjeiro JM; Rossi AM
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):1-9. PubMed ID: 21109408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium phosphate precipitation on the surface of HA-G-Ti composite under physiologic conditions.
    Ban S; Maruno S; Iwata H; Itoh H
    J Biomed Mater Res; 1994 Jan; 28(1):65-71. PubMed ID: 8126030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications.
    Chen XB; Li YC; Du Plessis J; Hodgson PD; Wen C
    Acta Biomater; 2009 Jun; 5(5):1808-20. PubMed ID: 19223253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: a quartz crystal microbalance study.
    Yang Z; Si S; Zeng X; Zhang C; Dai H
    Acta Biomater; 2008 May; 4(3):560-8. PubMed ID: 18053780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and in vitro evaluation of biphasic calcium pyrophosphate-tricalciumphosphate radio frequency magnetron sputter coatings.
    Takahashi K; van den Beucken JJ; Wolke JG; Hayakawa T; Nishiyama N; Jansen JA
    J Biomed Mater Res A; 2008 Mar; 84(3):682-90. PubMed ID: 17635019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology and formation mechanism of hydroxyapatite coating by hydrothermal method on CaO-SiO2-B2O3-Na2O glass.
    Zhang H; Li S
    Biomed Mater Eng; 2000; 10(3-4):205-12. PubMed ID: 11202148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of calcium salt content in the poly(epsilon-caprolactone)/silica nanocomposite on the nucleation and growth behavior of apatite layer.
    Rhee SH
    J Biomed Mater Res A; 2003 Dec; 67(4):1131-8. PubMed ID: 14624498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical analysis of calcium phosphate precipitation in simulated body fluid.
    Lu X; Leng Y
    Biomaterials; 2005 Apr; 26(10):1097-108. PubMed ID: 15451629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate.
    Sriranganathan D; Kanwal N; Hing KA; Hill RG
    J Mater Sci Mater Med; 2016 Feb; 27(2):39. PubMed ID: 26704556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of simulated body fluid flowing rate on bone-like apatite formation on porous calcium phosphate ceramics].
    Duan YR; Liu KW; Chen JY; Zhang XD
    Space Med Med Eng (Beijing); 2002 Jun; 15(3):203-7. PubMed ID: 12224554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
    Gu YW; Khor KA; Cheang P
    Biomaterials; 2004 Aug; 25(18):4127-34. PubMed ID: 15046903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of pH on the structural evolution of accelerated biomimetic apatite.
    Chou YF; Chiou WA; Xu Y; Dunn JC; Wu BM
    Biomaterials; 2004 Oct; 25(22):5323-31. PubMed ID: 15110483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium phosphate phase transformation produced by the interaction of the portland cement component of white mineral trioxide aggregate with a phosphate-containing fluid.
    Tay FR; Pashley DH; Rueggeberg FA; Loushine RJ; Weller RN
    J Endod; 2007 Nov; 33(11):1347-51. PubMed ID: 17963961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites.
    Liu C; Chen CW; Ducheyne P
    Biomed Mater; 2008 Sep; 3(3):034111. PubMed ID: 18689928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactivity of three CaO-P2O5-SiO2 sol-gel glasses.
    Salinas AJ; Martin AI; Vallet-RegĂ­ M
    J Biomed Mater Res; 2002 Sep; 61(4):524-32. PubMed ID: 12115442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium phosphate formation at the surface of bioactive glass in vitro.
    Andersson OH; Kangasniemi I
    J Biomed Mater Res; 1991 Aug; 25(8):1019-30. PubMed ID: 1918106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid.
    Kim HM; Himeno T; Kokubo T; Nakamura T
    Biomaterials; 2005 Jul; 26(21):4366-73. PubMed ID: 15701365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water.
    Lin FH; Liao CJ; Chen KS; Su JS; Lin CP
    Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of calcium phosphate ceramic composition and structure on in vitro behavior. II. Precipitation.
    Radin SR; Ducheyne P
    J Biomed Mater Res; 1993 Jan; 27(1):35-45. PubMed ID: 8380597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.