BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 12736259)

  • 21. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers.
    Dudareva N; Andersson S; Orlova I; Gatto N; Reichelt M; Rhodes D; Boland W; Gershenzon J
    Proc Natl Acad Sci U S A; 2005 Jan; 102(3):933-8. PubMed ID: 15630092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complete blockage of the mevalonate pathway results in male gametophyte lethality.
    Suzuki M; Nakagawa S; Kamide Y; Kobayashi K; Ohyama K; Hashinokuchi H; Kiuchi R; Saito K; Muranaka T; Nagata N
    J Exp Bot; 2009; 60(7):2055-64. PubMed ID: 19363204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway.
    Wanke M; Skorupinska-Tudek K; Swiezewska E
    Acta Biochim Pol; 2001; 48(3):663-72. PubMed ID: 11833775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Farnesol-mediated shift in the metabolic origin of prenyl groups used for protein prenylation in plants.
    Huchelmann A; Brahim MS; Gerber E; Tritsch D; Bach TJ; Hemmerlin A
    Biochimie; 2016 Aug; 127():95-102. PubMed ID: 27138105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Effects of fosmidomycin and lovastatin treatment on taxol biosynthesis in suspension culture cells of Taxus chinensis].
    Liu Z; Yu LJ; Li CY; Zhao CF
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Apr; 31(2):199-204. PubMed ID: 15840939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isoprenoid biosynthesis via the methylerythritol phosphate pathway: structural variations around phosphonate anchor and spacer of fosmidomycin, a potent inhibitor of deoxyxylulose phosphate reductoisomerase.
    Zinglé C; Kuntz L; Tritsch D; Grosdemange-Billiard C; Rohmer M
    J Org Chem; 2010 May; 75(10):3203-7. PubMed ID: 20429517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate.
    Hoeffler JF; Hemmerlin A; Grosdemange-Billiard C; Bach TJ; Rohmer M
    Biochem J; 2002 Sep; 366(Pt 2):573-83. PubMed ID: 12010124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The carotenogenesis pathway via the isoprenoid-beta-carotene interference approach in a new strain of Dunaliella salina isolated from Baja California Mexico.
    Paniagua-Michel J; Capa-Robles W; Olmos-Soto J; Gutierrez-Millan LE
    Mar Drugs; 2009; 7(1):45-56. PubMed ID: 19370170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis.
    Takahashi S; Kuzuyama T; Watanabe H; Seto H
    Proc Natl Acad Sci U S A; 1998 Aug; 95(17):9879-84. PubMed ID: 9707569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sponge-derived Streptomyces producing isoprenoids via the mevalonate pathway.
    Izumikawa M; Khan ST; Takagi M; Shin-ya K
    J Nat Prod; 2010 Feb; 73(2):208-12. PubMed ID: 20085309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structures of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate reductoisomerase provide new insights into catalysis.
    Henriksson LM; Unge T; Carlsson J; Aqvist J; Mowbray SL; Jones TA
    J Biol Chem; 2007 Jul; 282(27):19905-16. PubMed ID: 17491006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of Dolichol Mass Spectra Isotopic Envelopes as a Tool to Monitor Isoprenoid Biosynthesis.
    Jozwiak A; Lipko A; Kania M; Danikiewicz W; Surmacz L; Witek A; Wojcik J; Zdanowski K; Pączkowski C; Chojnacki T; Poznanski J; Swiezewska E
    Plant Physiol; 2017 Jun; 174(2):857-874. PubMed ID: 28385729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methylerythritol phosphate pathway to isoprenoids: kinetic modeling and in silico enzyme inhibitions in Plasmodium falciparum.
    Singh VK; Ghosh I
    FEBS Lett; 2013 Sep; 587(17):2806-17. PubMed ID: 23816706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics.
    Rodríguez-Concepción M; Boronat A
    Plant Physiol; 2002 Nov; 130(3):1079-89. PubMed ID: 12427975
    [No Abstract]   [Full Text] [Related]  

  • 35. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.
    Singh S; Pal S; Shanker K; Chanotiya CS; Gupta MM; Dwivedi UN; Shasany AK
    Physiol Plant; 2014 Dec; 152(4):617-33. PubMed ID: 24749735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase (IspC) from Mycobacterium tuberculosis: towards understanding mycobacterial resistance to fosmidomycin.
    Dhiman RK; Schaeffer ML; Bailey AM; Testa CA; Scherman H; Crick DC
    J Bacteriol; 2005 Dec; 187(24):8395-402. PubMed ID: 16321944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana.
    Laule O; Fürholz A; Chang HS; Zhu T; Wang X; Heifetz PB; Gruissem W; Lange M
    Proc Natl Acad Sci U S A; 2003 May; 100(11):6866-71. PubMed ID: 12748386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosynthetic pathway for the C45 polyprenol, solanesol, in tobacco.
    Fukusaki E; Takeno S; Bamba T; Okumoto H; Katto H; Kajiyama S; Kobayashi A
    Biosci Biotechnol Biochem; 2004 Sep; 68(9):1988-90. PubMed ID: 15388978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3-Hydroxy-3-methylglutaryl coenzyme A reductase genes from Glycine max regulate plant growth and isoprenoid biosynthesis.
    Wang S; Feng Y; Lou Y; Niu J; Yin C; Zhao J; Du W; Yue A
    Sci Rep; 2023 Mar; 13(1):3902. PubMed ID: 36890158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP) pathway enzyme expression in Catharanthus roseus.
    Han M; Heppel SC; Su T; Bogs J; Zu Y; An Z; Rausch T
    PLoS One; 2013; 8(5):e62467. PubMed ID: 23650515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.