These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12737582)

  • 41. Propagation of polar substituent effects in 1-(substituted phenyl)-6,7-dimethoxy-3,4-dihydro- and -1,2,3,4-tetrahydroisoquinolines as explained by resonance polarization concept.
    Neuvonen K; Fülöp F; Neuvonen H; Koch A; Kleinpeter E; Pihlaja K
    J Org Chem; 2005 Dec; 70(26):10670-8. PubMed ID: 16355984
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of oxidation on the structure of styryl-substituted sexithiophenes: a resonance Raman spectroscopy and density functional theory study.
    Clarke TM; Gordon KC; Officer DL; Grant DK
    J Chem Phys; 2006 Apr; 124(16):164501. PubMed ID: 16674140
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aromatic stabilization energy calculations for the antiaromatic fluorenyl cation. Issues in the choice of reference systems for positively charged species.
    Herndon WC; Mills NS
    J Org Chem; 2005 Oct; 70(21):8492-6. PubMed ID: 16209597
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carbon-13 NMR of fluorocyclopropanes.
    Brey WS
    Magn Reson Chem; 2008 May; 46(5):480-92. PubMed ID: 18324736
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Local aromaticity of the six-membered rings in pyracylene. A difficult case for the NICS indicator of aromaticity.
    Poater J; Solà M; Viglione RG; Zanasi R
    J Org Chem; 2004 Oct; 69(22):7537-42. PubMed ID: 15497979
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Persistent oxidation dications from twisted fluoranthenes, benzo[k]fluoranthene and dimethyldibenzo[j.l]fluoranthene: charge delocalization mode, tropicity, and formation of novel 8,8'-bifluoranthenyls. An NMR and theoretical study.
    Laali KK; Okazaki T; Galembeck SE; Siegel JS
    J Org Chem; 2001 Dec; 66(26):8701-8. PubMed ID: 11749597
    [TBL] [Abstract][Full Text] [Related]  

  • 47. meso-Aryl substituted rubyrin and its higher homologues: structural characterization and chemical properties.
    Shimizu S; Cho WS; Sessler JL; Shinokubo H; Osuka A
    Chemistry; 2008; 14(9):2668-78. PubMed ID: 18270988
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oxidation of a Dithieno[3,4-b:3',4'-d]thiophene Cyclic Dimer Containing a Planar Cyclooctatetraene Ring: Retention of High Antiaromaticity During Reactions.
    Hamaoka H; Shiroma S; Aburaya K; Hasegawa M; Nishinaga T
    Chempluschem; 2019 Jun; 84(6):704-711. PubMed ID: 31944031
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using antiaromaticity to illuminate aromaticity during a research career with undergraduates.
    Mills N
    J Org Chem; 2013 May; 78(10):4629-41. PubMed ID: 23527565
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ground- and excited-state aromaticity and antiaromaticity in benzene and cyclobutadiene.
    Karadakov PB
    J Phys Chem A; 2008 Aug; 112(31):7303-9. PubMed ID: 18636691
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Observable azacyclobutenone ylides with antiaromatic character from 2-diazoacetyl-azaaromatics.
    Fu N; Allen AD; Kobayashi S; Sequeira PA; Shang M; Tidwell TT; Mishima M
    J Am Chem Soc; 2007 May; 129(19):6210-5. PubMed ID: 17451241
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis and Characterization of 16π Antiaromatic 2,7-Dihydrodiazapyrenes: Antiaromatic Polycyclic Hydrocarbons with Embedded Nitrogen.
    Nakazato T; Takekoshi H; Sakurai T; Shinokubo H; Miyake Y
    Angew Chem Int Ed Engl; 2021 Jun; 60(25):13877-13881. PubMed ID: 33847045
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measuring antiaromaticity by an analysis of ring current and coupling constant changes in a cyclopentadienone-fused dihydropyrene.
    Mitchell RH; Zhang R; Fan W; Berg DJ
    J Am Chem Soc; 2005 Nov; 127(46):16251-4. PubMed ID: 16287317
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect on ring current of the Kekulé vibration in aromatic and antiaromatic rings.
    Bean DE; Fowler PW
    J Phys Chem A; 2011 Nov; 115(46):13649-56. PubMed ID: 21954962
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 22-hydroxybenziporphyrin: switching of antiaromaticity by phenol-keto tautomerization.
    Stepień M; Latos-Grazyński L; Szterenberg L
    J Org Chem; 2007 Mar; 72(7):2259-70. PubMed ID: 17378535
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Double aromaticity in monocyclic carbon, boron, and borocarbon rings based on magnetic criteria.
    Wodrich MD; Corminboeuf C; Park SS; Schleyer Pv
    Chemistry; 2007; 13(16):4582-93. PubMed ID: 17431868
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Theoretical investigation of electron transport modulation through benzenedithiol by substituent groups.
    Smeu M; Wolkow RA; DiLabio GA
    J Chem Phys; 2008 Jul; 129(3):034707. PubMed ID: 18647038
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tuning the Spin, Aromaticity, and Quantum Tunneling in Computationally Designed Fulvalenes.
    Solel E; Kozuch S
    J Org Chem; 2018 Sep; 83(18):10826-10834. PubMed ID: 30113830
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiple aromaticity and antiaromaticity in silicon clusters.
    Zhai HJ; Kuznetsov AE; Boldyrev AI; Wang LS
    Chemphyschem; 2004 Dec; 5(12):1885-91. PubMed ID: 15648137
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sigma-delocalization versus pi-resonance in alpha-aryl-substituted vinyl cations.
    Müller T; Margraf D; Syha Y
    J Am Chem Soc; 2005 Aug; 127(31):10852-60. PubMed ID: 16076190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.