These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 12738070)

  • 21. Gustatory projections from the nucleus of the solitary tract to the parabrachial nuclei in the hamster.
    Cho YK; Li CS; Smith DV
    Chem Senses; 2002 Jan; 27(1):81-90. PubMed ID: 11751472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Corticofugal influence on taste responses in the nucleus of the solitary tract in the rat.
    Di Lorenzo PM; Monroe S
    J Neurophysiol; 1995 Jul; 74(1):258-72. PubMed ID: 7472329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasma leptin inhibits the response of nucleus of the solitary tract neurons to aortic baroreceptor stimulation.
    Ciriello J
    Brain Res Bull; 2013 Aug; 97():96-103. PubMed ID: 23792336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GABAB receptors in the NTS mediate the inhibitory effect of trigeminal nociceptive inputs on parasympathetic reflex vasodilation in the rat masseter muscle.
    Ishii H; Izumi H
    Am J Physiol Regul Integr Comp Physiol; 2012 Mar; 302(6):R776-84. PubMed ID: 22218420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural coding mechanisms for flow rate in taste-responsive cells in the nucleus of the solitary tract of the rat.
    Di Lorenzo PM; Victor JD
    J Neurophysiol; 2007 Feb; 97(2):1857-61. PubMed ID: 17182909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Responses to binary taste mixtures in the nucleus of the solitary tract: neural coding with firing rate.
    Chen JY; Di Lorenzo PM
    J Neurophysiol; 2008 May; 99(5):2144-57. PubMed ID: 18287552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tonic GABAergic inhibition of taste-responsive neurons in the nucleus of the solitary tract.
    Smith DV; Li CS
    Chem Senses; 1998 Apr; 23(2):159-69. PubMed ID: 9589164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Target site of inhibition of baroreflex vagal bradycardia by nasal stimulation.
    Kobayashi M; Majima Y
    Brain Res; 2004 May; 1009(1-2):137-46. PubMed ID: 15120591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amygdalofugal influence on processing of taste information in the nucleus of the solitary tract of the rat.
    Kang Y; Lundy RF
    J Neurophysiol; 2010 Aug; 104(2):726-41. PubMed ID: 20519577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Repeated sodium depletion affects gustatory neural responses in the nucleus of the solitary tract of rats.
    Tamura R; Norgren R
    Am J Physiol; 1997 Oct; 273(4):R1381-91. PubMed ID: 9362303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Taste coding in the nucleus of the solitary tract of the awake, freely licking rat.
    Roussin AT; D'Agostino AE; Fooden AM; Victor JD; Di Lorenzo PM
    J Neurosci; 2012 Aug; 32(31):10494-506. PubMed ID: 22855799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two types of inhibitory influences target different groups of taste-responsive cells in the nucleus of the solitary tract of the rat.
    Rosen AM; Di Lorenzo PM
    Brain Res; 2009 Jun; 1275():24-32. PubMed ID: 19371730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-dependent inhibition of hindlimb somatic afferent transmission within nucleus tractus solitarius: an in vivo intracellular recording study.
    Toney GM; Mifflin SW
    Neuroscience; 1995 Sep; 68(2):445-53. PubMed ID: 7477955
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GABA-mediated corticofugal inhibition of taste-responsive neurons in the nucleus of the solitary tract.
    Smith DV; Li CS
    Brain Res; 2000 Mar; 858(2):408-15. PubMed ID: 10708694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms involved in modulation of trigeminal primary afferent activity in rats with peripheral mononeuropathy.
    Kitagawa J; Takeda M; Suzuki I; Kadoi J; Tsuboi Y; Honda K; Matsumoto S; Nakagawa H; Tanabe A; Iwata K
    Eur J Neurosci; 2006 Oct; 24(7):1976-86. PubMed ID: 17040479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and function of gustatory neurons in the nucleus of the solitary tract: II. Relationships between neuronal morphology and physiology.
    Renehan WE; Jin Z; Zhang X; Schweitzer L
    J Comp Neurol; 1996 Apr; 367(2):205-21. PubMed ID: 8708005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preference conditioning alters taste responses in the nucleus of the solitary tract of the rat.
    Giza BK; Ackroff K; McCaughey SA; Sclafani A; Scott TR
    Am J Physiol; 1997 Oct; 273(4):R1230-40. PubMed ID: 9362285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Some anatomical and electrophysiological properties of tooth-pulp afferents in the cat.
    Lisney SJ
    J Physiol; 1978 Nov; 284():19-36. PubMed ID: 731526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frequency-dependent properties of inhibitory synapses in the rostral nucleus of the solitary tract.
    Grabauskas G; Bradley RM
    J Neurophysiol; 2003 Jan; 89(1):199-211. PubMed ID: 12522172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Taste responses of neurons in the hamster solitary nucleus are modulated by the central nucleus of the amygdala.
    Li CS; Cho YK; Smith DV
    J Neurophysiol; 2002 Dec; 88(6):2979-92. PubMed ID: 12466423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.