These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12738267)

  • 1. Uptake, translocation and fate of trichloroacetic acid in a Norway spruce/soil system.
    Schröder P; Matucha M; Forczek ST; Uhlírová H; Fuksová K; Albrechtová J
    Chemosphere; 2003 Jul; 52(2):437-42. PubMed ID: 12738267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trichloroacetic acid cycling in Sitka spruce saplings and effects on sapling health following long term exposure.
    Dickey CA; Heal KV; Stidson RT; Koren R; Schröder P; Cape JN; Heal MR
    Environ Pollut; 2004 Jul; 130(2):165-76. PubMed ID: 15158031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of trichloroacetic acid in environmental studies using carbon 14 and chlorine 36.
    Matucha M; Rohlenová J; Forczek ST; Uhlírová H; Gryndler M; Fuksová K; Schröder P
    Chemosphere; 2006 Jun; 63(11):1924-32. PubMed ID: 16313943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trichloroacetic acid in Norway spruce/soil-system. II. Distribution and degradation in the plant.
    Forczek ST; Uhlírová H; Gryndler M; Albrechtová J; Fuksová K; Vágner M; Schröder P; Matucha M
    Chemosphere; 2004 Jul; 56(4):327-33. PubMed ID: 15183994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of uptake, translocation and fate of trichloroacetic acid in Norway spruce (Picea abies/L./Karst.) using 14C-labelling.
    Matucha M; Uhífrová H; Bubner M
    Chemosphere; 2001 Jul; 44(2):217-22. PubMed ID: 11444303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trichloroacetic acid in Norway spruce/soil-system. I. Biodegradation in soil.
    Matucha M; Forczek ST; Gryndler M; Uhlírová H; Fuksová K; Schröder P
    Chemosphere; 2003 Jan; 50(3):303-9. PubMed ID: 12656249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental risk assessment of airborne trichloroacetic acid--a contribution to the discussion on the significance of anthropogenic and natural sources.
    Ahlers J; Regelmann J; Riedhammer C
    Chemosphere; 2003 Jul; 52(2):531-7. PubMed ID: 12738278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of concentrations and chemistry of trichloroacetate in the environment.
    Hoekstra EJ
    Chemosphere; 2003 Jul; 52(2):355-69. PubMed ID: 12738258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labelled TNT in trees.
    Schoenmuth BW; Pestemer W
    Environ Sci Pollut Res Int; 2004; 11(5):331-9. PubMed ID: 15506637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root uptake of lead by Norway spruce grown on 210Pb spiked soils.
    Hovmand MF; Nielsen SP; Johnsen I
    Environ Pollut; 2009 Feb; 157(2):404-9. PubMed ID: 19013698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluxes of trichloroacetic acid through a conifer forest canopy.
    Stidson RT; Heal KV; Dickey CA; Cape JN; Heal MR
    Environ Pollut; 2004 Nov; 132(1):73-84. PubMed ID: 15276275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term exposure of Sitka spruce seedlings to trichloroacetic acid.
    Cape JN; Reeves NM; Schröder P; Heal MR
    Environ Sci Technol; 2003 Jul; 37(13):2953-7. PubMed ID: 12875400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The production and degradation of trichloroacetic acid in soil: results from in situ soil column experiments.
    Heal MR; Dickey CA; Heal KV; Stidson RT; Matucha M; Cape JN
    Chemosphere; 2010 Apr; 79(4):401-7. PubMed ID: 20172585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Addressing analytical uncertainties in the determination of trichloroacetic acid in soil.
    Dickey CA; Heal KV; Cape JN; Stidson RT; Reeves NM; Heal MR
    J Environ Monit; 2005 Feb; 7(2):137-44. PubMed ID: 15690095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conifer needles as passive biomonitors of the spatial and temporal distribution of DDT from a point source.
    Di Guardo A; Zaccara S; Cerabolini B; Acciarri M; Terzaghi G; Calamari D
    Chemosphere; 2003 Aug; 52(5):789-97. PubMed ID: 12757779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root proliferation of Norway spruce and Scots pine in response to local magnesium supply in soil.
    Zhang J; George E
    Tree Physiol; 2009 Feb; 29(2):199-206. PubMed ID: 19203945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long-term acidification, Nacetín, Czech Republic.
    Oulehle F; Hofmeister J; Cudlín P; Hruska J
    Sci Total Environ; 2006 Nov; 370(2-3):532-44. PubMed ID: 16935320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil.
    Brunner I; Luster J; Günthardt-Goerg MS; Frey B
    Environ Pollut; 2008 Apr; 152(3):559-68. PubMed ID: 17707113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of clear-cutting and soil preparation on natural 15N abundance in the soil and needles of two boreal conifer tree species.
    Sah SP; Ilvesniemi H
    Isotopes Environ Health Stud; 2006 Dec; 42(4):367-77. PubMed ID: 17090488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluxes of trichloroacetic acid between atmosphere, biota, soil, and groundwater.
    Schöler HF; Keppler F; Fahimi IJ; Niedan VW
    Chemosphere; 2003 Jul; 52(2):339-54. PubMed ID: 12738257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.