These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 12738273)

  • 1. Formation of volatile iodinated alkanes in soil: results from laboratory studies.
    Keppler F; Borchers R; Elsner P; Fahimi I; Pracht J; Schöler HF
    Chemosphere; 2003 Jul; 52(2):477-83. PubMed ID: 12738273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halocarbons produced by natural oxidation processes during degradation of organic matter.
    Keppler F; Eiden R; Niedan V; Pracht J; Schöler HF
    Nature; 2000 Jan; 403(6767):298-301. PubMed ID: 10659846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of organic iodine supplied as iodide in a soil-water system in Chiba, Japan.
    Shimamoto YS; Takahashi Y; Terada Y
    Environ Sci Technol; 2011 Mar; 45(6):2086-92. PubMed ID: 21322630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural abiotic formation of trihalomethanes in soil: results from laboratory studies and field samples.
    Huber SG; Kotte K; Schöler HF; Williams J
    Environ Sci Technol; 2009 Jul; 43(13):4934-9. PubMed ID: 19673288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural abiotic formation of furans in soil.
    Huber SG; Wunderlich S; Schöler HF; Williams J
    Environ Sci Technol; 2010 Aug; 44(15):5799-804. PubMed ID: 20614942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid.
    Tighe M; Lockwood P; Wilson S
    J Environ Monit; 2005 Dec; 7(12):1177-85. PubMed ID: 16307069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids.
    Clemente R; Bernal MP
    Chemosphere; 2006 Aug; 64(8):1264-73. PubMed ID: 16481023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of chloroacetic acids from soil, humic acid and phenolic moieties.
    Fahimi IJ; Keppler F; Schöler HF
    Chemosphere; 2003 Jul; 52(2):513-20. PubMed ID: 12738276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments.
    Wang Z; Yang C; Kelly-Hooper F; Hollebone BP; Peng X; Brown CE; Landriault M; Sun J; Yang Z
    J Chromatogr A; 2009 Feb; 1216(7):1174-91. PubMed ID: 19131067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils.
    Steely S; Amarasiriwardena D; Xing B
    Environ Pollut; 2007 Jul; 148(2):590-8. PubMed ID: 17258851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach for the simultaneous determination of iodide, iodate and organo-iodide for 127I and 129I in environmental samples using gas chromatography-mass spectrometry.
    Zhang S; Schwehr KA; Ho YF; Xu C; Roberts KA; Kaplan DI; Brinkmeyer R; Yeager CM; Santschi PH
    Environ Sci Technol; 2010 Dec; 44(23):9042-8. PubMed ID: 21069952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of methyl iodide on a natural manganese oxide.
    Allard S; Gallard H; Fontaine C; Croué JP
    Water Res; 2010 Aug; 44(15):4623-9. PubMed ID: 20580399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption study of 25 volatile organic compounds in several Mediterranean soils using headspace-gas chromatography-mass spectrometry.
    Serrano A; Gallego M
    J Chromatogr A; 2006 Jun; 1118(2):261-70. PubMed ID: 16620848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced chemical oxidation of aromatic hydrocarbons in soil systems.
    Kang N; Hua I
    Chemosphere; 2005 Nov; 61(7):909-22. PubMed ID: 16257314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified Fenton oxidation of diesel fuel in arctic soils rich in organic matter and iron.
    Sherwood MK; Cassidy DP
    Chemosphere; 2014 Oct; 113():56-61. PubMed ID: 25065790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of C2-C15 volatile organic compounds in a landfill cover soil.
    Tassi F; Montegrossi G; Vaselli O; Liccioli C; Moretti S; Nisi B
    Sci Total Environ; 2009 Jul; 407(15):4513-25. PubMed ID: 19446310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irrigation, organic matter addition, and tarping as methods of reducing emissions of methyl iodide from agricultural soil.
    Ashworth DJ; Luo L; Xuan R; Yates SR
    Environ Sci Technol; 2011 Feb; 45(4):1384-90. PubMed ID: 21214237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid.
    Stemmler K; Ammann M; Donders C; Kleffmann J; George C
    Nature; 2006 Mar; 440(7081):195-8. PubMed ID: 16525469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid oxidation of iodide and hypoiodous acid with ferrate and no formation of iodoform and monoiodoacetic acid in the ferrate/I
    Wang X; Liu Y; Huang Z; Wang L; Wang Y; Li Y; Li J; Qi J; Ma J
    Water Res; 2018 Nov; 144():592-602. PubMed ID: 30092505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments.
    Bauer M; Blodau C
    Sci Total Environ; 2006 Feb; 354(2-3):179-90. PubMed ID: 16398994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.