BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12738674)

  • 1. Synergistic antileukemic interactions between 17-AAG and UCN-01 involve interruption of RAF/MEK- and AKT-related pathways.
    Jia W; Yu C; Rahmani M; Krystal G; Sausville EA; Dent P; Grant S
    Blood; 2003 Sep; 102(5):1824-32. PubMed ID: 12738674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapamycin and UCN-01 synergistically induce apoptosis in human leukemia cells through a process that is regulated by the Raf-1/MEK/ERK, Akt, and JNK signal transduction pathways.
    Hahn M; Li W; Yu C; Rahmani M; Dent P; Grant S
    Mol Cancer Ther; 2005 Mar; 4(3):457-70. PubMed ID: 15767555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Farnesyltransferase inhibitors interact synergistically with the Chk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK.
    Dai Y; Rahmani M; Pei XY; Khanna P; Han SI; Mitchell C; Dent P; Grant S
    Blood; 2005 Feb; 105(4):1706-16. PubMed ID: 15494423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coadministration of the heat shock protein 90 antagonist 17-allylamino- 17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells.
    Rahmani M; Yu C; Dai Y; Reese E; Ahmed W; Dent P; Grant S
    Cancer Res; 2003 Dec; 63(23):8420-7. PubMed ID: 14679005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase/MAPK cascade interact synergistically with UCN-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells.
    Dai Y; Yu C; Singh V; Tang L; Wang Z; McInistry R; Dent P; Grant S
    Cancer Res; 2001 Jul; 61(13):5106-15. PubMed ID: 11431348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lethal effects of pharmacological cyclin-dependent kinase inhibitors in human leukemia cells proceed through a phosphatidylinositol 3-kinase/Akt-dependent process.
    Yu C; Rahmani M; Dai Y; Conrad D; Krystal G; Dent P; Grant S
    Cancer Res; 2003 Apr; 63(8):1822-33. PubMed ID: 12702569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells.
    Yu C; Krystal G; Varticovksi L; McKinstry R; Rahmani M; Dent P; Grant S
    Cancer Res; 2002 Jan; 62(1):188-99. PubMed ID: 11782377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of apoptosis in human leukemia cells by the tyrosine kinase inhibitor adaphostin proceeds through a RAF-1/MEK/ERK- and AKT-dependent process.
    Yu C; Rahmani M; Almenara J; Sausville EA; Dent P; Grant S
    Oncogene; 2004 Feb; 23(7):1364-76. PubMed ID: 14647418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells.
    Maggio SC; Rosato RR; Kramer LB; Dai Y; Rahmani M; Paik DS; Czarnik AC; Payne SG; Spiegel S; Grant S
    Cancer Res; 2004 Apr; 64(7):2590-600. PubMed ID: 15059916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cotreatment with 17-allylamino-demethoxygeldanamycin and FLT-3 kinase inhibitor PKC412 is highly effective against human acute myelogenous leukemia cells with mutant FLT-3.
    George P; Bali P; Cohen P; Tao J; Guo F; Sigua C; Vishvanath A; Fiskus W; Scuto A; Annavarapu S; Moscinski L; Bhalla K
    Cancer Res; 2004 May; 64(10):3645-52. PubMed ID: 15150124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic induction of apoptosis in human leukemia cells (U937) exposed to bryostatin 1 and the proteasome inhibitor lactacystin involves dysregulation of the PKC/MAPK cascade.
    Vrana JA; Grant S
    Blood; 2001 Apr; 97(7):2105-14. PubMed ID: 11264178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of 17-AAG-induced apoptosis: role of Bcl-2, Bcl-XL, and Bax downstream of 17-AAG-mediated down-regulation of Akt, Raf-1, and Src kinases.
    Nimmanapalli R; O'Bryan E; Kuhn D; Yamaguchi H; Wang HG; Bhalla KN
    Blood; 2003 Jul; 102(1):269-75. PubMed ID: 12623837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic interaction between 17-AAG and phosphatidylinositol 3-kinase inhibition in human malignant glioma cells.
    Premkumar DR; Arnold B; Jane EP; Pollack IF
    Mol Carcinog; 2006 Jan; 45(1):47-59. PubMed ID: 16267832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coadministration of UCN-01 with MEK1/2 inhibitors potently induces apoptosis in BCR/ABL+ leukemia cells sensitive and resistant to ST1571.
    Yu C; Dai Y; Dent P; Grant S
    Cancer Biol Ther; 2002; 1(6):674-82. PubMed ID: 12642693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cotreatment with suberanoylanilide hydroxamic acid and 17-allylamino 17-demethoxygeldanamycin synergistically induces apoptosis in Bcr-Abl+ Cells sensitive and resistant to STI571 (imatinib mesylate) in association with down-regulation of Bcr-Abl, abrogation of signal transducer and activator of transcription 5 activity, and Bax conformational change.
    Rahmani M; Reese E; Dai Y; Bauer C; Kramer LB; Huang M; Jove R; Dent P; Grant S
    Mol Pharmacol; 2005 Apr; 67(4):1166-76. PubMed ID: 15625278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and -resistant myeloma cells through an IL-6-independent mechanism.
    Dai Y; Landowski TH; Rosen ST; Dent P; Grant S
    Blood; 2002 Nov; 100(9):3333-43. PubMed ID: 12384435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases.
    Yao Q; Nishiuchi R; Li Q; Kumar AR; Hudson WA; Kersey JH
    Clin Cancer Res; 2003 Oct; 9(12):4483-93. PubMed ID: 14555522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bryostatin 1 and UCN-01 potentiate 1-beta-D-arabinofuranosylcytosine-induced apoptosis in human myeloid leukemia cells through disparate mechanisms.
    Wang S; Wang Z; Grant S
    Mol Pharmacol; 2003 Jan; 63(1):232-42. PubMed ID: 12488556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interruption of the NF-kappaB pathway by Bay 11-7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells.
    Dai Y; Pei XY; Rahmani M; Conrad DH; Dent P; Grant S
    Blood; 2004 Apr; 103(7):2761-70. PubMed ID: 14645003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative inhibitory effect of ZD1839 (Iressa) in combination with 17-AAG on glioma cell growth.
    Premkumar DR; Arnold B; Pollack IF
    Mol Carcinog; 2006 May; 45(5):288-301. PubMed ID: 16550610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.