BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 12738865)

  • 1. Molecular architecture of the multiprotein splicing factor SF3b.
    Golas MM; Sander B; Will CL; Lührmann R; Stark H
    Science; 2003 May; 300(5621):980-4. PubMed ID: 12738865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into branch site proofreading by human spliceosome.
    Zhang X; Zhan X; Bian T; Yang F; Li P; Lu Y; Xing Z; Fan R; Zhang QC; Shi Y
    Nat Struct Mol Biol; 2024 May; 31(5):835-845. PubMed ID: 38196034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of the yeast SF3b splicing factor.
    Wang Q; He J; Lynn B; Rymond BC
    Mol Cell Biol; 2005 Dec; 25(24):10745-54. PubMed ID: 16314500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a sequence element directing a protein to nuclear speckles.
    Eilbracht J; Schmidt-Zachmann MS
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):3849-54. PubMed ID: 11274404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rewards of divergence in sequences, 3-D structures and dynamics of yeast and human spliceosome SF3b complexes.
    Yazhini A; Sandhya S; Srinivasan N
    Curr Res Struct Biol; 2021; 3():133-145. PubMed ID: 35028595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Architecture of SF3b and Structural Consequences of Its Cancer-Related Mutations.
    Cretu C; Schmitzová J; Ponce-Salvatierra A; Dybkov O; De Laurentiis EI; Sharma K; Will CL; Urlaub H; Lührmann R; Pena V
    Mol Cell; 2016 Oct; 64(2):307-319. PubMed ID: 27720643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA.
    Kaida D; Motoyoshi H; Tashiro E; Nojima T; Hagiwara M; Ishigami K; Watanabe H; Kitahara T; Yoshida T; Nakajima H; Tani T; Horinouchi S; Yoshida M
    Nat Chem Biol; 2007 Sep; 3(9):576-83. PubMed ID: 17643111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SF3B1 mutations constitute a novel therapeutic target in breast cancer.
    Maguire SL; Leonidou A; Wai P; Marchiò C; Ng CK; Sapino A; Salomon AV; Reis-Filho JS; Weigelt B; Natrajan RC
    J Pathol; 2015 Mar; 235(4):571-80. PubMed ID: 25424858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splicing factor SF3b as a target of the antitumor natural product pladienolide.
    Kotake Y; Sagane K; Owa T; Mimori-Kiyosue Y; Shimizu H; Uesugi M; Ishihama Y; Iwata M; Mizui Y
    Nat Chem Biol; 2007 Sep; 3(9):570-5. PubMed ID: 17643112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Major conformational change in the complex SF3b upon integration into the spliceosomal U11/U12 di-snRNP as revealed by electron cryomicroscopy.
    Golas MM; Sander B; Will CL; Lührmann R; Stark H
    Mol Cell; 2005 Mar; 17(6):869-83. PubMed ID: 15780942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and assembly of the SF3a splicing factor complex of U2 snRNP.
    Lin PC; Xu RM
    EMBO J; 2012 Mar; 31(6):1579-90. PubMed ID: 22314233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spliceosome structure and function.
    Will CL; Lührmann R
    Cold Spring Harb Perspect Biol; 2011 Jul; 3(7):. PubMed ID: 21441581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic protein-protein interaction wiring of the human spliceosome.
    Hegele A; Kamburov A; Grossmann A; Sourlis C; Wowro S; Weimann M; Will CL; Pena V; Lührmann R; Stelzl U
    Mol Cell; 2012 Feb; 45(4):567-80. PubMed ID: 22365833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spliceosome: design principles of a dynamic RNP machine.
    Wahl MC; Will CL; Lührmann R
    Cell; 2009 Feb; 136(4):701-18. PubMed ID: 19239890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of a core spliceosomal protein interface.
    Schellenberg MJ; Edwards RA; Ritchie DB; Kent OA; Golas MM; Stark H; Lührmann R; Glover JN; MacMillan AM
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1266-71. PubMed ID: 16432215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SF3B1 association with chromatin determines splicing outcomes.
    Kfir N; Lev-Maor G; Glaich O; Alajem A; Datta A; Sze SK; Meshorer E; Ast G
    Cell Rep; 2015 Apr; 11(4):618-29. PubMed ID: 25892229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural model of the p14/SF3b155 · branch duplex complex.
    Schellenberg MJ; Dul EL; MacMillan AM
    RNA; 2011 Jan; 17(1):155-65. PubMed ID: 21062891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of spliceosomal protein SAP 155 coupled with splicing catalysis.
    Wang C; Chua K; Seghezzi W; Lees E; Gozani O; Reed R
    Genes Dev; 1998 May; 12(10):1409-14. PubMed ID: 9585501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage.
    Alsafadi S; Houy A; Battistella A; Popova T; Wassef M; Henry E; Tirode F; Constantinou A; Piperno-Neumann S; Roman-Roman S; Dutertre M; Stern MH
    Nat Commun; 2016 Feb; 7():10615. PubMed ID: 26842708
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.