These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12739073)

  • 41. 1-Aminocyclopropane-1-Carboxylate: A Novel and Strong Chemoattractant for the Plant Beneficial Rhizobacterium
    Li T; Zhang J; Shen C; Li H; Qiu L
    Mol Plant Microbe Interact; 2019 Jun; 32(6):750-759. PubMed ID: 30640574
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of ACC deaminase gene in Pseudomonas entomophila strain PS-PJH isolated from the rhizosphere soil.
    Kamala-Kannan S; Lee KJ; Park SM; Chae JC; Yun BS; Lee YH; Park YJ; Oh BT
    J Basic Microbiol; 2010 Apr; 50(2):200-5. PubMed ID: 20082369
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato.
    Creus CM; Graziano M; Casanovas EM; Pereyra MA; Simontacchi M; Puntarulo S; Barassi CA; Lamattina L
    Planta; 2005 May; 221(2):297-303. PubMed ID: 15824907
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress.
    Zhang S; Gan Y; Xu B
    BMC Plant Biol; 2019 Jan; 19(1):22. PubMed ID: 30634903
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of growth promoting microorganisms on tomato seedlings growing in different media conditions.
    Pokluda R; Ragasová L; Jurica M; Kalisz A; Komorowska M; Niemiec M; Sekara A
    PLoS One; 2021; 16(11):e0259380. PubMed ID: 34731216
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cloning and characterization of a plasmid encoded ACC deaminase from an indigenous Pseudomonas fluorescens FY32.
    Farajzadeh D; Aliasgharzad N; Sokhandan Bashir N; Yakhchali B
    Curr Microbiol; 2010 Jul; 61(1):37-43. PubMed ID: 20049599
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineered ACC deaminase-expressing free-living cells of Mesorhizobium loti show increased nodulation efficiency and competitiveness on Lotus spp.
    Conforte VP; Echeverria M; Sánchez C; Ugalde RA; Menéndez AB; Lepek VC
    J Gen Appl Microbiol; 2010 Aug; 56(4):331-8. PubMed ID: 20953097
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Production of ACC Deaminase and Trehalose by the Plant Growth Promoting Bacterium
    Orozco-Mosqueda MDC; Duan J; DiBernardo M; Zetter E; Campos-García J; Glick BR; Santoyo G
    Front Microbiol; 2019; 10():1392. PubMed ID: 31275294
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding
    Heydarian Z; Yu M; Gruber M; Glick BR; Zhou R; Hegedus DD
    Front Microbiol; 2016; 7():1966. PubMed ID: 28018305
    [No Abstract]   [Full Text] [Related]  

  • 50. Surface display of ACC deaminase on endophytic Enterobacteriaceae strains to increase saline resistance of host rice sprouts by regulating plant ethylene synthesis.
    Liu Y; Cao L; Tan H; Zhang R
    Microb Cell Fact; 2017 Nov; 16(1):214. PubMed ID: 29183329
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245.
    Pothier JF; Wisniewski-Dyé F; Weiss-Gayet M; Moënne-Loccoz Y; Prigent-Combaret C
    Microbiology (Reading); 2007 Oct; 153(Pt 10):3608-3622. PubMed ID: 17906157
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Selection of ACC deaminase positive, thermohalotolerant and drought tolerance enhancing plant growth-promoting bacteria from rhizospheres of Cyamopsis tetragonoloba grown in arid regions.
    Goyal D; Kumar S; Meena D; Solanki SS; Swaroop S; Pandey J
    Lett Appl Microbiol; 2022 Apr; 74(4):519-535. PubMed ID: 34919753
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation of Rhizobacteria from Jatropha curcas and characterization of produced ACC deaminase.
    Jha CK; Annapurna K; Saraf M
    J Basic Microbiol; 2012 Jun; 52(3):285-95. PubMed ID: 21953604
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala.
    Tittabutr P; Awaya JD; Li QX; Borthakur D
    Syst Appl Microbiol; 2008 Jun; 31(2):141-50. PubMed ID: 18406559
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phyllosphere symbiont promotes plant growth through ACC deaminase production.
    Herpell JB; Alickovic A; Diallo B; Schindler F; Weckwerth W
    ISME J; 2023 Aug; 17(8):1267-1277. PubMed ID: 37264153
    [TBL] [Abstract][Full Text] [Related]  

  • 56. AcdR protein is an activator of transcription of 1-aminocyclopropane-1-carboxylate deaminase in Methylobacterium radiotolerans JCM 2831.
    Ekimova GA; Fedorov DN; Doronina NV; Khmelenina VN; Mustakhimov II
    Antonie Van Leeuwenhoek; 2022 Sep; 115(9):1165-1176. PubMed ID: 35867173
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metagenomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solanum tuberosum L.
    Nikolic B; Schwab H; Sessitsch A
    Arch Microbiol; 2011 Sep; 193(9):665-76. PubMed ID: 21523387
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria.
    Carlos MJ; Stefani PY; Janette AM; Melani MS; Gabriela PO
    Microbiol Res; 2016; 188-189():53-61. PubMed ID: 27296962
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops.
    Orozco-Mosqueda MDC; Glick BR; Santoyo G
    Microbiol Res; 2020 May; 235():126439. PubMed ID: 32097862
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions.
    Gamalero E; Berta G; Massa N; Glick BR; Lingua G
    J Appl Microbiol; 2010 Jan; 108(1):236-45. PubMed ID: 19566717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.