These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 12739075)

  • 1. Simultaneous measurements of organic carbon mineralization and bacterial production in oxic and anoxic lake sediments.
    Bastviken D; Olsson M; Tranvik L
    Microb Ecol; 2003 Jul; 46(1):73-82. PubMed ID: 12739075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The leucine incorporation method estimates bacterial growth equally well in both oxic and anoxic lake waters.
    Bastviken D; Tranvik L
    Appl Environ Microbiol; 2001 Jul; 67(7):2916-21. PubMed ID: 11425702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditions affecting the release of phosphorus from surface lake sediments.
    Christophoridis C; Fytianos K
    J Environ Qual; 2006; 35(4):1181-92. PubMed ID: 16738404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Bacterial processes of the methane cycle in the bottom sediments of Baikal lake].
    Dagurova OP; Namsaraev BB; Kozyreva LP; Zemskaia TI; Dulov LE
    Mikrobiologiia; 2004; 73(2):248-57. PubMed ID: 15198038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineral cycling and pH gradient related with biological activity under transient anoxic-oxic conditions: effect on P mobility in volcanic lake sediments.
    Ribeiro DC; Martins G; Nogueira R; Brito AG
    Environ Sci Technol; 2014 Aug; 48(16):9205-10. PubMed ID: 25084343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment-water interface in a eutrophic lake.
    Liikanen A; Martikainen PJ
    Chemosphere; 2003 Sep; 52(8):1287-93. PubMed ID: 12852980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology.
    Dong H; Zhang G; Jiang H; Yu B; Chapman LR; Lucas CR; Fields MW
    Microb Ecol; 2006 Jan; 51(1):65-82. PubMed ID: 16400537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Intensity of the microbiological processes of the methane cycle in different types of Baltic lakes].
    Dziuban AN
    Mikrobiologiia; 2002; 71(1):111-8. PubMed ID: 11910799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature.
    Glissman K; Chin KJ; Casper P; Conrad R
    Microb Ecol; 2004 Oct; 48(3):389-99. PubMed ID: 15692859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal cycling during sediment early diagenesis in a water reservoir affected by acid mine drainage.
    Torres E; Ayora C; Canovas CR; García-Robledo E; Galván L; Sarmiento AM
    Sci Total Environ; 2013 Sep; 461-462():416-29. PubMed ID: 23747557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characteristics of organic carbon forms in the sediment of Wuliangsuhai and Daihai Lakes].
    Mao HF; He J; Lü CW; Liang Y; Liu HL; Wang FJ
    Huan Jing Ke Xue; 2011 Mar; 32(3):658-66. PubMed ID: 21634160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tolumonas auensis gen. nov., sp. nov., a toluene-producing bacterium from anoxic sediments of a freshwater lake.
    Fischer-Romero C; Tindall BJ; Jüttner F
    Int J Syst Bacteriol; 1996 Jan; 46(1):183-8. PubMed ID: 8573493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical ripening of dredged sediments. Part 1. Kinetics of biological organic matter mineralization and chemical sulfur oxidation.
    Vermeulen J; van Gool MP; Dorleijn AS; Joziasse J; Bruning H; Rulkens WH; Grotenhuis JT
    Environ Toxicol Chem; 2007 Dec; 26(12):2530-9. PubMed ID: 18020677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, USA.
    Norton SA; Coolidge K; Amirbahman A; Bouchard R; Kopácek J; Reinhardt R
    Sci Total Environ; 2008 Oct; 404(2-3):276-83. PubMed ID: 18440053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption and oxic degradation of the explosive CL-20 during transport in subsurface sediments.
    Szecsody JE; Girvin DC; Devary BJ; Campbell JA
    Chemosphere; 2004 Aug; 56(6):593-610. PubMed ID: 15212902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogeochemical cycling of manganese in Oneida Lake, New York: whole lake studies of manganese.
    Aguilar C; Nealson KH
    J Great Lakes Res; 1998; 24(1):93-104. PubMed ID: 11541258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the potential of anoxic biodegradation of intracellular and dissolved microcystins in lake sediments.
    Wu X; Wang C; Tian C; Xiao B; Song L
    J Hazard Mater; 2015 Apr; 286():395-401. PubMed ID: 25603288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of organic P forms from lake sediments.
    Ahlgren J; Reitzel K; De Brabandere H; Gogoll A; Rydin E
    Water Res; 2011 Jan; 45(2):565-72. PubMed ID: 20947118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The competitive role of organic carbon and dissolved sulfide in controlling the distribution of mercury in freshwater lake sediments.
    Belzile N; Lang CY; Chen YW; Wang M
    Sci Total Environ; 2008 Nov; 405(1-3):226-38. PubMed ID: 18657305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic and nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater lakes on the Yunnan Plateau.
    Liu Y; Zhang J; Zhao L; Li Y; Yang Y; Xie S
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2371-81. PubMed ID: 25698510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.