These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 12740095)

  • 1. Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats.
    Kruyt MC; de Bruijn JD; Wilson CE; Oner FC; van Blitterswijk CA; Verbout AJ; Dhert WJ
    Tissue Eng; 2003 Apr; 9(2):327-36. PubMed ID: 12740095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards injectable cell-based tissue-engineered bone: the effect of different calcium phosphate microparticles and pre-culturing.
    Kruyt MC; Persson C; Johansson G; Dhert WJ; de Bruijn JD
    Tissue Eng; 2006 Feb; 12(2):309-17. PubMed ID: 16548689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone formation by mesenchymal progenitor cells cultured on dense and microporous hydroxyapatite particles.
    Fischer EM; Layrolle P; Van Blitterswijk CA; De Bruijn JD
    Tissue Eng; 2003 Dec; 9(6):1179-88. PubMed ID: 14670105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of bone tissue engineering in goats: a peroperative seeding method using cryopreserved cells and localized bone formation in calcium phosphate scaffolds.
    Kruyt MC; de Bruijn JD; Yuan H; van Blitterswijk CA; Verbout AJ; Oner FC; Dhert WJ
    Transplantation; 2004 Feb; 77(3):359-65. PubMed ID: 14966408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of bone-tissue engineering in goats.
    Kruyt MC; Dhert WJ; Oner C; van Blitterswijk CA; Verbout AJ; de Bruijn JD
    J Biomed Mater Res B Appl Biomater; 2004 May; 69(2):113-20. PubMed ID: 15116399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of ectopic and orthotopic bone formation in cell-based tissue-engineered constructs in goats.
    Kruyt MC; Dhert WJ; Oner FC; van Blitterswijk CA; Verbout AJ; de Bruijn JD
    Biomaterials; 2007 Apr; 28(10):1798-805. PubMed ID: 17182096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional engineered bone from bone marrow stromal cells and their autogenous extracellular matrix.
    Syed-Picard FN; Larkin LM; Shaw CM; Arruda EM
    Tissue Eng Part A; 2009 Jan; 15(1):187-95. PubMed ID: 18759662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone marrow stromal cells enhance the osteogenic properties of hydroxyapatite scaffolds by modulating the foreign body reaction.
    Tour G; Wendel M; Tcacencu I
    J Tissue Eng Regen Med; 2014 Nov; 8(11):841-9. PubMed ID: 22782939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone marrow stromal cells and their use in regenerating bone.
    Cancedda R; Mastrogiacomo M; Bianchi G; Derubeis A; Muraglia A; Quarto R
    Novartis Found Symp; 2003; 249():133-43; discussion 143-7, 170-4, 239-41. PubMed ID: 12708654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone tissue engineering in a critical size defect compared to ectopic implantations in the goat.
    Kruyt MC; Dhert WJ; Yuan H; Wilson CE; van Blitterswijk CA; Verbout AJ; de Bruijn JD
    J Orthop Res; 2004 May; 22(3):544-51. PubMed ID: 15099633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells.
    Datta N; Holtorf HL; Sikavitsas VI; Jansen JA; Mikos AG
    Biomaterials; 2005 Mar; 26(9):971-7. PubMed ID: 15369685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of bone using porous calcium phosphate cement and bone marrow stromal cells for maxillary sinus augmentation with simultaneous implant placement in goats.
    Zou D; Guo L; Lu J; Zhang X; Wei J; Liu C; Zhang Z; Jiang X
    Tissue Eng Part A; 2012 Jul; 18(13-14):1464-78. PubMed ID: 22452368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The method of accelerating osteanagenesis and revascularization of tissue engineered bone in big animal in vivo].
    Chen B; Pei GX; Wang K; Jin D; Wei KH; Ren GH
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2003 Feb; 25(1):26-31. PubMed ID: 12905602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promotion of osteogenesis in tissue-engineered bone by pre-seeding endothelial progenitor cells-derived endothelial cells.
    Yu H; Vandevord PJ; Gong W; Wu B; Song Z; Matthew HW; Wooley PH; Yang SY
    J Orthop Res; 2008 Aug; 26(8):1147-52. PubMed ID: 18327810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the dynamics of bone formation, effect of cell seeding density, and potential of allogeneic cells in cell-based bone tissue engineering in goats.
    Kruyt M; De Bruijn J; Rouwkema J; Van Bliterswijk C; Oner C; Verbout A; Dhert W
    Tissue Eng Part A; 2008 Jun; 14(6):1081-8. PubMed ID: 18558815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue-engineered constructs using a rat cranial critical size defect model.
    Sikavitsas VI; van den Dolder J; Bancroft GN; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2003 Dec; 67(3):944-51. PubMed ID: 14613243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow.
    Zhang W; Walboomers XF; van Osch GJ; van den Dolder J; Jansen JA
    Tissue Eng Part A; 2008 Feb; 14(2):285-94. PubMed ID: 18333781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplanted bone marrow-derived osteoblastic cells.
    Dong J; Kojima H; Uemura T; Kikuchi M; Tateishi T; Tanaka J
    J Biomed Mater Res; 2001 Nov; 57(2):208-16. PubMed ID: 11484183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs.
    Monfoulet LE; Becquart P; Marchat D; Vandamme K; Bourguignon M; Pacard E; Viateau V; Petite H; Logeart-Avramoglou D
    Tissue Eng Part A; 2014 Jul; 20(13-14):1827-40. PubMed ID: 24447025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.