These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 12740096)
1. Calcium phosphate-chitosan composite scaffolds for bone tissue engineering. Zhang Y; Ni M; Zhang M; Ratner B Tissue Eng; 2003 Apr; 9(2):337-45. PubMed ID: 12740096 [TBL] [Abstract][Full Text] [Related]
2. Cell growth and function on calcium phosphate reinforced chitosan scaffolds. Zhang Y; Zhang M J Mater Sci Mater Med; 2004 Mar; 15(3):255-60. PubMed ID: 15334997 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. Zhang Y; Zhang M J Biomed Mater Res; 2002 Jul; 61(1):1-8. PubMed ID: 12001239 [TBL] [Abstract][Full Text] [Related]
4. [Proliferation and differentiation of MC 3T3-E1 cells cultured on nanohydroxyapatite/chitosan composite scaffolds]. Kong LJ; Ao Q; Xi J; Zhang L; Gong YD; Zhao NM; Zhang XF Sheng Wu Gong Cheng Xue Bao; 2007 Mar; 23(2):262-7. PubMed ID: 17460899 [TBL] [Abstract][Full Text] [Related]
5. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Chesnutt BM; Yuan Y; Buddington K; Haggard WO; Bumgardner JD Tissue Eng Part A; 2009 Sep; 15(9):2571-9. PubMed ID: 19309240 [TBL] [Abstract][Full Text] [Related]
6. Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. Lee YM; Park YJ; Lee SJ; Ku Y; Han SB; Choi SM; Klokkevold PR; Chung CP J Periodontol; 2000 Mar; 71(3):410-7. PubMed ID: 10776928 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
8. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications. Abou Neel EA; Chrzanowski W; Knowles JC Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():307-13. PubMed ID: 24411382 [TBL] [Abstract][Full Text] [Related]
9. In vitro growth and differentiation of osteoblast-like cells on hydroxyapatite ceramic granule calcified from red algae. Turhani D; Cvikl B; Watzinger E; Weissenböck M; Yerit K; Thurnher D; Lauer G; Ewers R J Oral Maxillofac Surg; 2005 Jun; 63(6):793-9. PubMed ID: 15944976 [TBL] [Abstract][Full Text] [Related]
10. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
11. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Kim HW; Kim HE; Salih V Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of macroporous chitosan-gelatin/beta-tricalcium phosphate composite scaffolds for bone tissue engineering. Yin Y; Ye F; Cui J; Zhang F; Li X; Yao K J Biomed Mater Res A; 2003 Dec; 67(3):844-55. PubMed ID: 14613233 [TBL] [Abstract][Full Text] [Related]
13. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Jiang T; Abdel-Fattah WI; Laurencin CT Biomaterials; 2006 Oct; 27(28):4894-903. PubMed ID: 16762408 [TBL] [Abstract][Full Text] [Related]
14. Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges. Arpornmaeklong P; Suwatwirote N; Pripatnanont P; Oungbho K Int J Oral Maxillofac Surg; 2007 Apr; 36(4):328-37. PubMed ID: 17223012 [TBL] [Abstract][Full Text] [Related]
15. In vitro evaluation of biomimetic chitosan-calcium phosphate scaffolds with potential application in bone tissue engineering. Tanase CE; Sartoris A; Popa MI; Verestiuc L; Unger RE; Kirkpatrick CJ Biomed Mater; 2013 Apr; 8(2):025002. PubMed ID: 23343569 [TBL] [Abstract][Full Text] [Related]
16. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. Zhang Y; Zhang M J Biomed Mater Res; 2002 Dec; 62(3):378-86. PubMed ID: 12209923 [TBL] [Abstract][Full Text] [Related]
17. Osteoblastic cellular responses on ionically crosslinked chitosan-tripolyphosphate fibrous 3-D mesh scaffolds. Pati F; Kalita H; Adhikari B; Dhara S J Biomed Mater Res A; 2013 Sep; 101(9):2526-37. PubMed ID: 23359556 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies. Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of suitable biodegradable scaffolds for engineered bone tissue. Phang MY; Ng MH; Tan KK; Aminuddin BS; Ruszymah BH; Fauziah O Med J Malaysia; 2004 May; 59 Suppl B():198-9. PubMed ID: 15468886 [TBL] [Abstract][Full Text] [Related]
20. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Zhao F; Yin Y; Lu WW; Leong JC; Zhang W; Zhang J; Zhang M; Yao K Biomaterials; 2002 Aug; 23(15):3227-34. PubMed ID: 12102194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]