BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 12740118)

  • 21. Memory and the brain: unexpected chemistries and a new pharmacology.
    Lynch G
    Neurobiol Learn Mem; 1998; 70(1-2):82-100. PubMed ID: 9753589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bidirectional redistribution of AMPA but not NMDA receptors after perforant path simulation in the adult rat hippocampus in vivo.
    Moga DE; Shapiro ML; Morrison JH
    Hippocampus; 2006; 16(11):990-1003. PubMed ID: 17039486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LTP and adaptation to inactivity: overlapping mechanisms and implications for metaplasticity.
    Thiagarajan TC; Lindskog M; Malgaroli A; Tsien RW
    Neuropharmacology; 2007 Jan; 52(1):156-75. PubMed ID: 16949624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus.
    Lauri SE; Palmer M; Segerstrale M; Vesikansa A; Taira T; Collingridge GL
    Neuropharmacology; 2007 Jan; 52(1):1-11. PubMed ID: 16919682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation.
    Nicoll RA; Malenka RC
    Ann N Y Acad Sci; 1999 Apr; 868():515-25. PubMed ID: 10414328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fear conditioning induces a lasting potentiation of synaptic currents in vitro.
    McKernan MG; Shinnick-Gallagher P
    Nature; 1997 Dec; 390(6660):607-11. PubMed ID: 9403689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Voltage-controlled plasticity at GluR2-deficient synapses onto hippocampal interneurons.
    Laezza F; Dingledine R
    J Neurophysiol; 2004 Dec; 92(6):3575-81. PubMed ID: 15331617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Late phase of long-term potentiation induced by co-application of N-methyl-d-aspartic acid and the antagonist of NR2B-containing N-methyl-d-aspartic acid receptors in rat hippocampus.
    Oh-Nishi A; Saji M; Satoh SZ; Ogata M; Suzuki N
    Neuroscience; 2009 Mar; 159(1):127-35. PubMed ID: 19010396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AMPA silencing is a prerequisite for developmental long-term potentiation in the hippocampal CA1 region.
    Abrahamsson T; Gustafsson B; Hanse E
    J Neurophysiol; 2008 Nov; 100(5):2605-14. PubMed ID: 18799599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycine-induced long-term synaptic potentiation is mediated by the glycine transporter GLYT1.
    Igartua I; Solís JM; Bustamante J
    Neuropharmacology; 2007 Jun; 52(8):1586-95. PubMed ID: 17462677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Presynaptic activity and Ca2+ entry are required for the maintenance of NMDA receptor-independent LTP at visual cortical excitatory synapses.
    Liu HN; Kurotani T; Ren M; Yamada K; Yoshimura Y; Komatsu Y
    J Neurophysiol; 2004 Aug; 92(2):1077-87. PubMed ID: 15277600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A critical period for long-term potentiation at thalamocortical synapses.
    Crair MC; Malenka RC
    Nature; 1995 May; 375(6529):325-8. PubMed ID: 7753197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chronic liver failure in rats impairs glutamatergic synaptic transmission and long-term potentiation in hippocampus and learning ability.
    Monfort P; Erceg S; Piedrafita B; Llansola M; Felipo V
    Eur J Neurosci; 2007 Apr; 25(7):2103-11. PubMed ID: 17439494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain.
    Humeau Y; Shaban H; Bissière S; Lüthi A
    Nature; 2003 Dec; 426(6968):841-5. PubMed ID: 14685239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Postsynaptic depolarisation enhances transmitter release and causes the appearance of responses at "silent" synapses in rat hippocampus.
    Voronin LL; Altinbaev RS; Bayazitov IT; Gasparini S; Kasyanov AV; Saviane C; Savtchenko L; Cherubini E
    Neuroscience; 2004; 126(1):45-59. PubMed ID: 15145072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversible synaptic depression in developing rat CA3 CA1 synapses explained by a novel cycle of AMPA silencing-unsilencing.
    Abrahamsson T; Gustafsson B; Hanse E
    J Neurophysiol; 2007 Nov; 98(5):2604-11. PubMed ID: 17804578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recordings of glutamate receptor channels in isolated postsynaptic densities.
    Riquelme G; Wyneken U; Villanueva S; Orrego F
    Neuroreport; 1993 Sep; 4(10):1163-6. PubMed ID: 8105999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RIM1alpha is required for presynaptic long-term potentiation.
    Castillo PE; Schoch S; Schmitz F; Südhof TC; Malenka RC
    Nature; 2002 Jan; 415(6869):327-30. PubMed ID: 11797010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term potentiation in the nucleus accumbens requires both NR2A- and NR2B-containing N-methyl-D-aspartate receptors.
    Schotanus SM; Chergui K
    Eur J Neurosci; 2008 Apr; 27(8):1957-64. PubMed ID: 18412616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Role of phospho-calcium/ calmodulin-dependent protein kinase II in the induction and maintenance of long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn of the rat].
    Xin WJ; Li MT; Yang HW; Zhang HM; Hu NW; Hu XD; Zhang T; Liu XG
    Sheng Li Xue Bao; 2004 Feb; 56(1):83-8. PubMed ID: 14985835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.