These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12740368)

  • 1. Structure-based analysis of high pressure adaptation of alpha-actin.
    Morita T
    J Biol Chem; 2003 Jul; 278(30):28060-6. PubMed ID: 12740368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-pressure adaptation of muscle proteins from deep-sea fishes, Coryphaenoides yaquinae and C. armatus.
    Morita T
    Ann N Y Acad Sci; 2010 Feb; 1189():91-4. PubMed ID: 20233373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of deep-sea fish α-actin pressure tolerance investigated by molecular dynamics simulations.
    Wakai N; Takemura K; Morita T; Kitao A
    PLoS One; 2014; 9(1):e85852. PubMed ID: 24465747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative sequence analysis of myosin heavy chain proteins from congeneric shallow- and deep-living rattail fish (genus Coryphaenoides).
    Morita T
    J Exp Biol; 2008 May; 211(Pt 9):1362-7. PubMed ID: 18424669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome sequencing of Coryphaenoides yaquinae reveals convergent and lineage-specific molecular evolution in deep-sea adaptation.
    Li W; Song J; Tu H; Jiang S; Pan B; Li J; Zhao Y; Chen L; Xu Q
    Mol Ecol Resour; 2024 Jun; ():e13989. PubMed ID: 38946220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and sequence of gilthead sea bream (Sparus aurata) alpha-skeletal actin: tissue and developmental expression.
    Moutou KA; Socorro S; Power DM; Mamuris Z; Canario AV
    Comp Biochem Physiol B Biochem Mol Biol; 2001 Aug; 130(1):13-21. PubMed ID: 11470440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depth as a driver of evolution in the deep sea: Insights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides.
    Gaither MR; Violi B; Gray HWI; Neat F; Drazen JC; Grubbs RD; Roa-Varón A; Sutton T; Hoelzel AR
    Mol Phylogenet Evol; 2016 Nov; 104():73-82. PubMed ID: 27475496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure tolerance of deep-sea enzymes can be evolved through increasing volume changes in protein transitions: a study with lactate dehydrogenases from abyssal and hadal fishes.
    Gerringer ME; Yancey PH; Tikhonova OV; Vavilov NE; Zgoda VG; Davydov DR
    FEBS J; 2020 Dec; 287(24):5394-5410. PubMed ID: 32250538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The binding of mutant actins to profilin, ATP and DNase I.
    Drummond DR; Hennessey ES; Sparrow JC
    Eur J Biochem; 1992 Oct; 209(1):171-9. PubMed ID: 1396697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of intramolecular cross-linking between glutamine-41 and lysine-50 on actin structure and function.
    Eli-Berchoer L; Hegyi G; Patthy A; Reisler E; Muhlrad A
    J Muscle Res Cell Motil; 2000; 21(5):405-14. PubMed ID: 11129431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid substitutions in malate dehydrogenases of piezophilic bacteria isolated from intestinal contents of deep-sea fishes retrieved from the abyssal zone.
    Saito R; Kato C; Nakayama A
    J Gen Appl Microbiol; 2006 Feb; 52(1):9-19. PubMed ID: 16598154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for an F-actin like conformation in the actin:DNase I complex.
    Hambly BD; Kiessling P; dos Remedios CG
    Adv Exp Med Biol; 1994; 358():25-34. PubMed ID: 7801808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure effects on actin self-assembly: interspecific differences in the equilibrium and kinetics of the G to F transformation.
    Swezey RR; Somero GN
    Biochemistry; 1985 Feb; 24(4):852-60. PubMed ID: 3994993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structure of uncomplexed actin in the ADP state.
    Otterbein LR; Graceffa P; Dominguez R
    Science; 2001 Jul; 293(5530):708-11. PubMed ID: 11474115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular phylogenetic relationships of the deep-sea fish genus Coryphaenoides (Gadiformes: Macrouridae) based on mitochondrial DNA.
    Morita T
    Mol Phylogenet Evol; 1999 Dec; 13(3):447-54. PubMed ID: 10620402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the DNase-I-binding loop in dynamic properties of actin filament.
    Khaitlina SY; Strzelecka-Gołaszewska H
    Biophys J; 2002 Jan; 82(1 Pt 1):321-34. PubMed ID: 11751319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of Ser14 and Asp157 in the nucleotide-binding site of beta-actin.
    Schüler H; Korenbaum E; Schutt CE; Lindberg U; Karlsson R
    Eur J Biochem; 1999 Oct; 265(1):210-20. PubMed ID: 10491176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Twelve actin-encoding cDNAs from the American lobster, Homarus americanus: cloning and tissue expression of eight skeletal muscle, one heart, and three cytoplasmic isoforms.
    Kim BK; Kim KS; Oh CW; Mykles DL; Lee SG; Kim HJ; Kim HW
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Jun; 153(2):178-84. PubMed ID: 19258044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of ATP, ADP and divalent cations in the formation of binary and ternary complexes of actin, cofilin and DNase I.
    Chhabra D; Nosworthy NJ; dos Remedios CG
    Electrophoresis; 2000 Nov; 21(17):3863-9. PubMed ID: 11271505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of subtilisin cleaved actin lacking the segment of residues 43-47 in the DNase I binding loop.
    Kiessling P; Jahn W; Maier G; Polzar B; Mannherz HG
    Biochemistry; 1995 Nov; 34(45):14834-42. PubMed ID: 7578093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.