These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 12740722)

  • 1. Utilisation of structurally diverse organophosphonates by Streptomycetes.
    Obojska A; Lejczak B
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):557-63. PubMed ID: 12740722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of phosphonates by streptomycete isolates.
    Obojska A; Lejczak B; Kubrak M
    Appl Microbiol Biotechnol; 1999 Jun; 51(6):872-6. PubMed ID: 10422232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphonate metabolism in Helicobacter pylori.
    Ford JL; Kaakoush NO; Mendz GL
    Antonie Van Leeuwenhoek; 2010 Jan; 97(1):51-60. PubMed ID: 19842056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-phosphorus bond cleavage activity in cell-free extracts of Enterobacter aerogenes ATCC 15038 and Pseudomonas sp. 4ASW.
    McMullan G; Watkins R; Harper DB; Quinn JP
    Biochem Int; 1991 Sep; 25(2):271-9. PubMed ID: 1789794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphonate catabolism by Campylobacter spp.
    Mendz GL; Mégraud F; Korolik V
    Arch Microbiol; 2005 Feb; 183(2):113-20. PubMed ID: 15647906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on new phosphonic acid antibiotics. II. Taxonomic studies on producing organisms of the phosphonic acid and related compounds.
    Iguchi E; Okuhara M; Kohsaka M; Aoki H; Imanaka H
    J Antibiot (Tokyo); 1980 Jan; 33(1):19-23. PubMed ID: 7372546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling.
    Quinn JP; Kulakova AN; Cooley NA; McGrath JW
    Environ Microbiol; 2007 Oct; 9(10):2392-400. PubMed ID: 17803765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SapT, a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes.
    Kodani S; Lodato MA; Durrant MC; Picart F; Willey JM
    Mol Microbiol; 2005 Dec; 58(5):1368-80. PubMed ID: 16313622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the conversion of structural analogues of (S)-2-hydroxypropylphosphonic acid to epoxides by the final enzyme of fosfomycin biosynthesis in S. fradiae.
    Schweifer A; Hammerschmidt F
    Bioorg Med Chem Lett; 2008 May; 18(10):3056-9. PubMed ID: 18155909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Methods of measuring the growth of streptomycetes (author's transl)].
    Hilliger M; Nitzsche C
    Z Allg Mikrobiol; 1974; 14(3):193-8. PubMed ID: 4608244
    [No Abstract]   [Full Text] [Related]  

  • 11. A biosynthesis activity of Streptomyces recifensis var. lyticus.
    Sokolova IE; Kylochek TP; Vinnikov AI
    Mikrobiol Z; 2004; 66(6):10-7. PubMed ID: 15765865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Natural compounds with biologic value containing a P-C bond and phosphonates].
    Neuzil E; Cassaigne A
    Expos Annu Biochim Med; 1980; 34():165-210. PubMed ID: 7009203
    [No Abstract]   [Full Text] [Related]  

  • 13. The characteristics and mechanisms of pyridine biodegradation by Streptomyces sp.
    Li J; Cai W; Cai J
    J Hazard Mater; 2009 Jun; 165(1-3):950-4. PubMed ID: 19054611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyper-inducible expression system for streptomycetes.
    Herai S; Hashimoto Y; Higashibata H; Maseda H; Ikeda H; Omura S; Kobayashi M
    Proc Natl Acad Sci U S A; 2004 Sep; 101(39):14031-5. PubMed ID: 15377796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphonate utilization by the globally important marine diazotroph Trichodesmium.
    Dyhrman ST; Chappell PD; Haley ST; Moffett JW; Orchard ED; Waterbury JB; Webb EA
    Nature; 2006 Jan; 439(7072):68-71. PubMed ID: 16397497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic degradation of 2-picolinic acid by a nitrobenzene-assimilating strain: Streptomyces sp. Z2.
    Zheng C; Zhou J; Wang J; Qu B; Wang J; Lu H; Zhao H
    Bioresour Technol; 2009 Mar; 100(6):2082-4. PubMed ID: 19042125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel finding that Streptomyces clavuligerus can produce the antibiotic clavulanic acid using olive oil as a sole carbon source.
    Efthimiou G; Thumser AE; Avignone-Rossa CA
    J Appl Microbiol; 2008 Dec; 105(6):2058-64. PubMed ID: 19120651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The overproduction of 2,4-DTBP accompanying to the lack of available form of phosphorus during the biodegradative utilization of aminophosphonates by Aspergillus terreus.
    Lenartowicz P; Kafarski P; Lipok J
    Biodegradation; 2015 Feb; 26(1):65-76. PubMed ID: 25385070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. alpha-Biphenylsulfonylamino 2-methylpropyl phosphonates: enantioselective synthesis and selective inhibition of MMPs.
    Biasone A; Tortorella P; Campestre C; Agamennone M; Preziuso S; Chiappini M; Nuti E; Carelli P; Rossello A; Mazza F; Gallina C
    Bioorg Med Chem; 2007 Jan; 15(2):791-9. PubMed ID: 17088065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on streptomycetes degradation of nicotine and chlorogenic acid in tobacco].
    Luo YJ; Chen YR; Li XM; Tang G; Wei P
    Wei Sheng Wu Xue Bao; 2007 Dec; 47(6):1095-7. PubMed ID: 18271272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.