These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 12740778)
1. The clinical significance of the reoxygenation injury in pediatric heart surgery. Allen BS Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu; 2003; 6():116-27. PubMed ID: 12740778 [TBL] [Abstract][Full Text] [Related]
2. Hypoxia, reoxygenation and the role of systemic leukodepletion in pediatric heart surgery. Allen BS; Ilbawi MN Perfusion; 2001 Mar; 16 Suppl():19-29. PubMed ID: 11334203 [TBL] [Abstract][Full Text] [Related]
3. Studies of hypoxemic/reoxygenation injury: without aortic clamping. III. Comparison of the magnitude of damage by hypoxemia/reoxygenation versus ischemia/reperfusion. Ihnken K; Morita K; Buckberg GD; Sherman MP; Young HH J Thorac Cardiovasc Surg; 1995 Oct; 110(4 Pt 2):1182-9. PubMed ID: 7475169 [TBL] [Abstract][Full Text] [Related]
4. Surgical reoxygenation injury of the myocardium in cyanotic patients: clinical relevance and therapeutic strategies by normoxic management during cardiopulmonary bypass. Morita K Gen Thorac Cardiovasc Surg; 2012 Sep; 60(9):549-56. PubMed ID: 22782441 [TBL] [Abstract][Full Text] [Related]
5. Detrimental effects of cardiopulmonary bypass in cyanotic infants: preventing the reoxygenation injury. Allen BS; Rahman S; Ilbawi MN; Kronon M; Bolling KS; Halldorsson AO; Feinberg H Ann Thorac Surg; 1997 Nov; 64(5):1381-7; discussion 1387-8. PubMed ID: 9386708 [TBL] [Abstract][Full Text] [Related]
6. Uncontrolled reoxygenation by initiating cardiopulmonary bypass is associated with higher protein S100 in cyanotic versus acyanotic patients. Matheis G; Abdel-Rahman U; Braun S; Wimmer-Greinecker G; Esmaili A; Seitz U; Bastanier CK; Moritz A; Hofstetter R Thorac Cardiovasc Surg; 2000 Oct; 48(5):263-8. PubMed ID: 11100757 [TBL] [Abstract][Full Text] [Related]
7. Prevention of the hypoxic reoxygenation injury with the use of a leukocyte-depleting filter. Bolling KS; Halldorsson A; Allen BS; Rahman S; Wang T; Kronon M; Feinberg H J Thorac Cardiovasc Surg; 1997 Jun; 113(6):1081-9; discussion 1089-90. PubMed ID: 9202689 [TBL] [Abstract][Full Text] [Related]
8. Extracorporeal membrane oxygenation for intraoperative cardiac support in children with congenital heart disease. Delmo Walter EM; Alexi-Meskishvili V; Huebler M; Loforte A; Stiller B; Weng Y; Berger F; Hetzer R Interact Cardiovasc Thorac Surg; 2010 May; 10(5):753-8. PubMed ID: 20139198 [TBL] [Abstract][Full Text] [Related]
9. Chronic hypoxia: a model for cyanotic congenital heart defects. Corno AF; Milano G; Samaja M; Tozzi P; von Segesser LK J Thorac Cardiovasc Surg; 2002 Jul; 124(1):105-12. PubMed ID: 12091815 [TBL] [Abstract][Full Text] [Related]
10. Studies of hypoxemic/reoxygenation injury: without aortic clamping. II. Evidence for reoxygenation damage. Ihnken K; Morita K; Buckberg GD; Matheis G; Sherman MP; Allen BS; Young HH J Thorac Cardiovasc Surg; 1995 Oct; 110(4 Pt 2):1171-81. PubMed ID: 7475168 [TBL] [Abstract][Full Text] [Related]
11. Normoxic and hyperoxic cardiopulmonary bypass in congenital heart disease. Mokhtari A; Lewis M Biomed Res Int; 2014; 2014():678268. PubMed ID: 25328889 [TBL] [Abstract][Full Text] [Related]
12. Reduction of reoxygenation injury and nitric oxide production in the cyanotic immature heart by controlling pO2. Ihnken K; Morita K; Buckberg GD; Ignarro LJ; Beyersdorf F Eur J Cardiothorac Surg; 1995; 9(8):410-8. PubMed ID: 7495584 [TBL] [Abstract][Full Text] [Related]
14. Optimizing response of the neonate and infant to cardiopulmonary bypass. Ungerleider RM; Shen I Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu; 2003; 6():140-6. PubMed ID: 12740780 [TBL] [Abstract][Full Text] [Related]
15. Myocardial injury and protection related to cardiopulmonary bypass. De Hert S; Moerman A Best Pract Res Clin Anaesthesiol; 2015 Jun; 29(2):137-49. PubMed ID: 26060026 [TBL] [Abstract][Full Text] [Related]
16. Regional differences in tissue oxygenation during cardiopulmonary bypass for correction of congenital heart disease in neonates and small infants: relevance of near-infrared spectroscopy. Redlin M; Koster A; Huebler M; Boettcher W; Nagdyman N; Hetzer R; Kuppe H; Kuebler WM J Thorac Cardiovasc Surg; 2008 Oct; 136(4):962-7. PubMed ID: 18954637 [TBL] [Abstract][Full Text] [Related]
17. Controlled reoxygenation during cardiopulmonary bypass decreases markers of organ damage, inflammation, and oxidative stress in single-ventricle patients undergoing pediatric heart surgery. Caputo M; Mokhtari A; Miceli A; Ghorbel MT; Angelini GD; Parry AJ; Suleiman SM J Thorac Cardiovasc Surg; 2014 Sep; 148(3):792-801.e8; discussion 800-1. PubMed ID: 25052821 [TBL] [Abstract][Full Text] [Related]
18. eComment: outcome of extracorporeal membrane oxygenation in pediatric cardiac surgery - impact of residual lesions. Edwin F Interact Cardiovasc Thorac Surg; 2010 May; 10(5):758-9. PubMed ID: 20403985 [No Abstract] [Full Text] [Related]
19. Venovenous extracorporeal membrane oxygenation for cyanotic congenital heart disease. Imamura M; Schmitz ML; Watkins B; Chipman CW; Faulkner SC; Fiser WP; Van Devanter SH; Drummond-Webb JJ Ann Thorac Surg; 2004 Nov; 78(5):1723-7. PubMed ID: 15511462 [TBL] [Abstract][Full Text] [Related]
20. Sildenafil citrate alleviates pulmonary hypertension after hypoxia and reoxygenation with cardiopulmonary bypass. Lyons JM; Duffy JY; Wagner CJ; Pearl JM J Am Coll Surg; 2004 Oct; 199(4):607-14. PubMed ID: 15454147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]