These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12741286)

  • 1. [Non-linear model of glottic vibration. Potential clinical implications].
    Giovanni A; Ouaknine M; Garrel R; Ayache S; Robert D
    Rev Laryngol Otol Rhinol (Bord); 2002; 123(5):273-7. PubMed ID: 12741286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on the modeling of the glottic vibration: towards a nonlinear model of type stick and slip].
    Garrel R; Giovanni A; Ouaknine MA
    Rev Laryngol Otol Rhinol (Bord); 2007; 128(5):279-88. PubMed ID: 20387373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2007 Oct; 122(4):2279-95. PubMed ID: 17902864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonatory threshold pressure in a healthy population before and after aerosol treatment, a preliminary study.
    Grini-Grandval MN; Bingenheimer S; Maunsell R; Ouaknine M; Giovanni A
    Rev Laryngol Otol Rhinol (Bord); 2002; 123(5):311-4. PubMed ID: 12741292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx.
    Slavit DH; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Phonatory physiology of the larynx: the oscillo-impedance concept].
    Dejonckere PH
    Rev Laryngol Otol Rhinol (Bord); 1987; 108 Spec No():365-8. PubMed ID: 3441692
    [No Abstract]   [Full Text] [Related]  

  • 9. Non linear behavior of vocal fold vibration in an experimental model of asymmetric larynx: role of coupling between the two folds.
    Ouaknine M; Giovanni A; Guelfucci B; Teston B; Triglia JM
    Rev Laryngol Otol Rhinol (Bord); 1998; 119(4):249-52. PubMed ID: 9865101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using the relaxation oscillations principle for simple phonation modeling.
    Garrel R; Scherer R; Nicollas R; Giovanni A; Ouaknine M
    J Voice; 2008 Jul; 22(4):385-98. PubMed ID: 17280814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the mechanism of vocal fold vibration during phonation.
    Meyer B; Candau P; Alcaras N; MacLeod P
    Acta Otolaryngol; 1984; 97(5-6):407-14. PubMed ID: 6464699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear modelling of double and triple period pitch breaks in vocal fold vibration.
    Menzer F; Buchli J; Howard DM; Ijspeert AJ
    Logoped Phoniatr Vocol; 2006; 31(1):36-42. PubMed ID: 16517521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The minimum glottal airflow to initiate vocal fold oscillation.
    Jiang JJ; Tao C
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2873-81. PubMed ID: 17550186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Ultrasonoglottography; the neutral glottic area and vibration of the vocal cords].
    Kaneko T; Kobayashi N; Tachibana M; Naito J; Hayasaki K
    Rev Laryngol Otol Rhinol (Bord); 1976; 97(9-10):363-9. PubMed ID: 1005973
    [No Abstract]   [Full Text] [Related]  

  • 15. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of impact stress using an aeroelastic model of voice production.
    Horácek J; Laukkanen AM; Sidlof P
    Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of epilarynx area on vocal fold dynamics.
    Döllinger M; Berry DA; Montequin DW
    Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaping function models of the phonatory excitation signal.
    Schoentgen J
    J Acoust Soc Am; 2003 Nov; 114(5):2906-12. PubMed ID: 14650024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Micromodulations of vocal air output induced by vibration of the vocal cords].
    Sneppe R
    Electrodiagn Ther; 1979; 16(4):210-8. PubMed ID: 527541
    [No Abstract]   [Full Text] [Related]  

  • 20. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.