BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 12741537)

  • 1. High pressure effects on proteolytic and glycolytic enzymes involved in cheese manufacturing.
    Malone AS; Wick C; Shellhammer TH; Courtney PD
    J Dairy Sci; 2003 Apr; 86(4):1139-46. PubMed ID: 12741537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteolytic enzyme activities in Cheddar cheese juice made using lactococcal starters of differing autolytic properties.
    Sheehan A; Cuinn GO; Fitzgerald RJ; Wilkinson MG
    J Appl Microbiol; 2006 Apr; 100(4):893-901. PubMed ID: 16553747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of calcium and phosphorus, lactose, and salt-to-moisture ratio on Cheddar cheese quality: proteolysis during ripening.
    Upreti P; Metzger LE; Hayes KD
    J Dairy Sci; 2006 Feb; 89(2):444-53. PubMed ID: 16428614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model to assess lactic acid bacteria aminopeptidase activities in Parmigiano Reggiano cheese during ripening.
    Gatti M; De Dea Lindner J; Gardini F; Mucchetti G; Bevacqua D; Fornasari ME; Neviani E
    J Dairy Sci; 2008 Nov; 91(11):4129-37. PubMed ID: 18946116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of high pressure on proteolytic enzymes in cheese: relationship with the proteolysis of ewe milk cheese.
    Juan B; Ferragut V; Buffa M; Guamis B; Trujillo AJ
    J Dairy Sci; 2007 May; 90(5):2113-25. PubMed ID: 17430908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of high-pressure treatment and a bacteriocin-producing lactic culture on the proteolysis, texture, and taste of Hispánico cheese.
    Avila M; Garde S; Gaya P; Medina M; Nuñez M
    J Dairy Sci; 2006 Aug; 89(8):2882-93. PubMed ID: 16840604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of chymosin- and plasmin-mediated primary proteolysis on the growth and biochemical activities of lactobacilli in miniature Cheddar-type cheeses.
    Milesi MM; McSweeney PL; Hynes ER
    J Dairy Sci; 2008 Sep; 91(9):3277-90. PubMed ID: 18765587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolysis of alphas-casein as a marker of Grana Padano cheese ripening.
    Gaiaschi A; Beretta B; Poiesi C; Conti A; Giuffrida MG; Galli CL; Restani P
    J Dairy Sci; 2000 Dec; 83(12):2733-9. PubMed ID: 11132839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of lactococcal starter proteinases to proteolysis in cheddar cheese.
    Law J; Fitzgerald GF; Uniacke-Lowe T; Daly C; Fox PF
    J Dairy Sci; 1993 Sep; 76(9):2455-67. PubMed ID: 8227650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of low concentration factor microfiltration on the composition and aging of Cheddar cheese.
    Neocleous M; Barbano DM; Rudan MA
    J Dairy Sci; 2002 Oct; 85(10):2425-37. PubMed ID: 12416794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined pH and high hydrostatic pressure effects on Lactococcus starter cultures and Candida spoilage yeasts in a fermented milk test system during cold storage.
    Daryaei H; Coventry J; Versteeg C; Sherkat F
    Food Microbiol; 2010 Dec; 27(8):1051-6. PubMed ID: 20832684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteolysis of Hispanico cheese manufactured using lacticin 481-producing Lactococcus lactis ssp. lactis INIA 639.
    Garde S; Avila M; Gaya P; Medina M; Nuñez M
    J Dairy Sci; 2006 Mar; 89(3):840-9. PubMed ID: 16507676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring the chemical and textural changes during ripening of Iranian White cheese made with different concentrations of starter.
    Khosrowshahi A; Madadlou A; Ebrahim zadeh Mousavi M; Emam-Djomeh Z
    J Dairy Sci; 2006 Sep; 89(9):3318-25. PubMed ID: 16899664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of high-pressure treatment at various temperatures on indigenous proteolytic enzymes and whey protein denaturation in bovine milk.
    Moatsou G; Bakopanos C; Katharios D; Katsaros G; Kandarakis I; Taoukis P; Politis I
    J Dairy Res; 2008 Aug; 75(3):262-9. PubMed ID: 18513457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta-casomorphins: analysis in cheese and susceptibility to proteolytic enzymes from Lactococcus lactis ssp. cremoris.
    Muehlenkamp MR; Warthesen JJ
    J Dairy Sci; 1996 Jan; 79(1):20-6. PubMed ID: 8675779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altering renneting pH changes microstructure, cell distribution, and lysis of Lactococcus lactis AM2 in cheese made from ultrafiltered milk.
    Hannon JA; Lopez C; Madec MN; Lortal S
    J Dairy Sci; 2006 Mar; 89(3):812-23. PubMed ID: 16507673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Pseudomonas fluorescens M3/6 bacterial protease on plasmin system and plasminogen activation.
    Frohbieter KA; Ismail B; Nielsen SS; Hayes KD
    J Dairy Sci; 2005 Oct; 88(10):3392-401. PubMed ID: 16162512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of exopolysaccharide-producing cultures in reduced-fat Cheddar cheese: composition and proteolysis.
    Awad S; Hassan AN; Halaweish F
    J Dairy Sci; 2005 Dec; 88(12):4195-203. PubMed ID: 16291610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of chymosin type and curd scalding temperature on proteolysis of hard cooked cheeses.
    Costabel LM; Bergamini CV; Pozza L; Cuffia F; Candioti MC; Hynes E
    J Dairy Res; 2015 Aug; 82(3):375-84. PubMed ID: 25876792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of lipolytic and glycolytic end-products in commercial Cheddar enzyme-modified cheese.
    Kilcawley KN; Wilkinson MG; Fox PF
    J Dairy Sci; 2001 Jan; 84(1):66-73. PubMed ID: 11210051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.