BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 12741988)

  • 21. Limb proprioceptive deficits without neuronal loss in transgenic mice overexpressing neurotrophin-3 in the developing nervous system.
    Ringstedt T; Kucera J; Lendahl U; Ernfors P; Ibáñez CF
    Development; 1997 Jul; 124(13):2603-13. PubMed ID: 9217002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proprioceptive afferents survive in the masseter muscle of trkC knockout mice.
    Matsuo S; Ichikawa H; Silos-Santiago I; Arends JJ; Henderson TA; Kiyomiya K; Kurebe M; Jacquin MF
    Neuroscience; 2000; 95(1):209-16. PubMed ID: 10619477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of supernumerary muscle spindles at the expense of Golgi tendon organs in ER81-deficient mice.
    Kucera J; Cooney W; Que A; Szeder V; Stancz-Szeder H; Walro J
    Dev Dyn; 2002 Mar; 223(3):389-401. PubMed ID: 11891988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Raf and akt mediate distinct aspects of sensory axon growth.
    Markus A; Zhong J; Snider WD
    Neuron; 2002 Jul; 35(1):65-76. PubMed ID: 12123609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of neurotrophins in the maintenance of the spinal cord motor neurons and the dorsal root ganglia proprioceptive sensory neurons.
    Stephens HE; Belliveau AC; Gupta JS; Mirkovic S; Kablar B
    Int J Dev Neurosci; 2005 Nov; 23(7):613-20. PubMed ID: 16183241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of kin of irregular chiasm-like 3/mKirre in proprioceptive neurons of the dorsal root ganglia and its interaction with nephrin in muscle spindles.
    Komori T; Gyobu H; Ueno H; Kitamura T; Senba E; Morikawa Y
    J Comp Neurol; 2008 Nov; 511(1):92-108. PubMed ID: 18752272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic regulation of the expression of neurotrophin receptors by Runx3.
    Nakamura S; Senzaki K; Yoshikawa M; Nishimura M; Inoue K; Ito Y; Ozaki S; Shiga T
    Development; 2008 May; 135(9):1703-11. PubMed ID: 18385258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensory ataxia and muscle spindle agenesis in mice lacking the transcription factor Egr3.
    Tourtellotte WG; Milbrandt J
    Nat Genet; 1998 Sep; 20(1):87-91. PubMed ID: 9731539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of sensory neurons in the absence of NGF/TrkA signaling in vivo.
    Patel TD; Jackman A; Rice FL; Kucera J; Snider WD
    Neuron; 2000 Feb; 25(2):345-57. PubMed ID: 10719890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glial cell line-derived neurotrophic factor-responsive and neurotrophin-3-responsive neurons require the cytoskeletal linker protein dystonin for postnatal survival.
    Carlsten JA; Kothary R; Wright DE
    J Comp Neurol; 2001 Apr; 432(2):155-68. PubMed ID: 11241383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A developmental switch in the response of DRG neurons to ETS transcription factor signaling.
    Hippenmeyer S; Vrieseling E; Sigrist M; Portmann T; Laengle C; Ladle DR; Arber S
    PLoS Biol; 2005 May; 3(5):e159. PubMed ID: 15836427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The transcription factor Egr3 modulates sensory axon-myotube interactions during muscle spindle morphogenesis.
    Tourtellotte WG; Keller-Peck C; Milbrandt J; Kucera J
    Dev Biol; 2001 Apr; 232(2):388-99. PubMed ID: 11401400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscle sensory neurons require neurotrophin-3 from peripheral tissues during the period of normal cell death.
    Oakley RA; Garner AS; Large TH; Frank E
    Development; 1995 May; 121(5):1341-50. PubMed ID: 7789265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different signaling pathways mediate regenerative versus developmental sensory axon growth.
    Liu RY; Snider WD
    J Neurosci; 2001 Sep; 21(17):RC164. PubMed ID: 11511695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of a full complement of cranial proprioceptors requires multiple neurotrophins.
    Fan G; Copray S; Huang EJ; Jones K; Yan Q; Walro J; Jaenisch R; Kucera J
    Dev Dyn; 2000 Jun; 218(2):359-70. PubMed ID: 10842362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dependence of developing group Ia afferents on neurotrophin-3.
    Kucera J; Fan G; Jaenisch R; Linnarsson S; Ernfors P
    J Comp Neurol; 1995 Dec; 363(2):307-20. PubMed ID: 8642077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of motoneuron-derived neurotrophin 3 in survival and axonal projection of sensory neurons during neural circuit formation.
    Usui N; Watanabe K; Ono K; Tomita K; Tamamaki N; Ikenaka K; Takebayashi H
    Development; 2012 Mar; 139(6):1125-32. PubMed ID: 22318233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissection of NT3 functions in vivo by gene replacement strategy.
    Coppola V; Kucera J; Palko ME; Martinez-De Velasco J; Lyons WE; Fritzsch B; Tessarollo L
    Development; 2001 Nov; 128(21):4315-27. PubMed ID: 11684666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of cutaneous and proprioceptive afferent projections in the chick spinal cord.
    Mendelson B; Koerber HR; Frank E
    Neurosci Lett; 1992 Apr; 138(1):72-6. PubMed ID: 1383880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SEMA3A regulates developing sensory projections in the chicken spinal cord.
    Fu SY; Sharma K; Luo Y; Raper JA; Frank E
    J Neurobiol; 2000 Dec; 45(4):227-36. PubMed ID: 11077427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.