These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12742390)

  • 1. Rhodopsin phosphorylation: 30 years later.
    Maeda T; Imanishi Y; Palczewski K
    Prog Retin Eye Res; 2003 Jul; 22(4):417-34. PubMed ID: 12742390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The vertebrate phototransduction cascade: amplification and termination mechanisms.
    Chen CK
    Rev Physiol Biochem Pharmacol; 2005; 154():101-21. PubMed ID: 16634148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Unknown mechanisms of the GPCR-signaling cascade in vertebrate photoreceptors].
    Govardskiĭ VI; Firsov ML
    Ross Fiziol Zh Im I M Sechenova; 2010 Sep; 96(9):861-79. PubMed ID: 21254535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal-dependent translocation of transducin, RGS9-1-Gbeta5L complex, and arrestin to detergent-resistant membrane rafts in photoreceptors.
    Nair KS; Balasubramanian N; Slepak VZ
    Curr Biol; 2002 Mar; 12(5):421-5. PubMed ID: 11882295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation in vertebrate photoreceptors.
    Fain GL; Matthews HR; Cornwall MC; Koutalos Y
    Physiol Rev; 2001 Jan; 81(1):117-151. PubMed ID: 11152756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK
    Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
    Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C
    J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor.
    Azevedo AW; Doan T; Moaven H; Sokal I; Baameur F; Vishnivetskiy SA; Homan KT; Tesmer JJ; Gurevich VV; Chen J; Rieke F
    Elife; 2015 Apr; 4():. PubMed ID: 25910054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction.
    Weiss ER; Ducceschi MH; Horner TJ; Li A; Craft CM; Osawa S
    J Neurosci; 2001 Dec; 21(23):9175-84. PubMed ID: 11717351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of rhodopsin activity in vision.
    Baylor DA; Burns ME
    Eye (Lond); 1998; 12 ( Pt 3b)():521-5. PubMed ID: 9775212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of rhodopsin kinase regulation by recoverin.
    Komolov KE; Senin II; Kovaleva NA; Christoph MP; Churumova VA; Grigoriev II; Akhtar M; Philippov PP; Koch KW
    J Neurochem; 2009 Jul; 110(1):72-9. PubMed ID: 19457073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance of rhodopsin studies for GPCR activation.
    Deupi X
    Biochim Biophys Acta; 2014 May; 1837(5):674-82. PubMed ID: 24041646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.
    Robinson KA; Ou WL; Guan X; Sugamori KS; Bandyopadhyay A; Ernst OP; Mitchell J
    J Neurochem; 2015 Dec; 135(6):1129-39. PubMed ID: 26375013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of turn-offs of frog rod phototransduction cascade.
    Astakhova LA; Firsov ML; Govardovskii VI
    J Gen Physiol; 2008 Nov; 132(5):587-604. PubMed ID: 18955597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors.
    Dell'Orco D
    FEBS Lett; 2013 Jun; 587(13):2060-6. PubMed ID: 23684654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a unified model of vertebrate rod phototransduction.
    Hamer RD; Nicholas SC; Tranchina D; Lamb TD; Jarvinen JL
    Vis Neurosci; 2005; 22(4):417-36. PubMed ID: 16212700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+-dependent control of rhodopsin phosphorylation: recoverin and rhodopsin kinase.
    Senin II; Koch KW; Akhtar M; Philippov PP
    Adv Exp Med Biol; 2002; 514():69-99. PubMed ID: 12596916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a single phosphorylation site within octopus rhodopsin.
    Ohguro H; Yoshida N; Shindou H; Crabb JW; Palczewski K; Tsuda M
    Photochem Photobiol; 1998 Dec; 68(6):824-8. PubMed ID: 9867032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of GPCR crystal structures.
    Lodowski DT; Angel TE; Palczewski K
    Photochem Photobiol; 2009; 85(2):425-30. PubMed ID: 19192200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.