BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12742446)

  • 1. Modelling heat transfer in a bone-cement-prosthesis system.
    Hansen E
    J Biomech; 2003 Jun; 36(6):787-95. PubMed ID: 12742446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pre-cooling and pre-heating procedures on cement polymerization and thermal osteonecrosis in cemented hip replacements.
    Li C; Schmid S; Mason J
    Med Eng Phys; 2003 Sep; 25(7):559-64. PubMed ID: 12835068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element thermal analysis of bone cement for joint replacements.
    Li C; Kotha S; Huang CH; Mason J; Yakimicki D; Hawkins M
    J Biomech Eng; 2003 Jun; 125(3):315-22. PubMed ID: 12929235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the fibrous tissue layer in cemented hip replacements: experimental and finite element methods.
    Waide V; Cristofolini L; Stolk J; Verdonschot N; Boogaard GJ; Toni A
    J Biomech; 2004 Jan; 37(1):13-26. PubMed ID: 14672564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pre-cooling and pre-heating procedures on cement polymerisation and thermal osteonecrosis in cemented hip replacements [Medical Engineering & Physics 25 (2003) 559-64].
    Talbot JC; Shaw DL
    Med Eng Phys; 2005 Jun; 27(5):439; author reply 441-2. PubMed ID: 15863352
    [No Abstract]   [Full Text] [Related]  

  • 6. Evaluation of the effects of implant materials and designs on thermal necrosis of bone in cemented hip arthroplasty.
    Li C; Kotha S; Mason J
    Biomed Mater Eng; 2003; 13(4):419-28. PubMed ID: 14646056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical prediction and experimental determination of the effect of mold characteristics on temperature and monomer conversion fraction profiles during polymerization of a PMMA-based bone cement.
    Vallo CI
    J Biomed Mater Res; 2002; 63(5):627-42. PubMed ID: 12209910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative measurement of the stresses induced during polymerisation of bone cement.
    Roques A; Browne M; Taylor A; New A; Baker D
    Biomaterials; 2004 Aug; 25(18):4415-24. PubMed ID: 15046932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of curing characteristics on residual stress generation in polymethyl methacrylate bone cements.
    Hingston JA; Dunne NJ; Looney L; McGuinness GB
    Proc Inst Mech Eng H; 2008 Aug; 222(6):933-45. PubMed ID: 18935810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on modelling of PMMA bone cement polymerisation.
    Stańczyk M
    J Biomech; 2005 Jul; 38(7):1397-403. PubMed ID: 15922750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational modelling of bone cement polymerization: temperature and residual stresses.
    Pérez MA; Nuño N; Madrala A; García-Aznar JM; Doblaré M
    Comput Biol Med; 2009 Sep; 39(9):751-9. PubMed ID: 19615676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of cement introduction and pressurization techniques.
    Dunne NJ; Orr JF; Beverland DE
    Proc Inst Mech Eng H; 2004; 218(1):11-25. PubMed ID: 14982342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of stem insertion rate on the porosity of the cement mantle of hip joint replacements.
    Baleani M; Fognani R; Toni A
    Proc Inst Mech Eng H; 2003; 217(3):199-205. PubMed ID: 12807160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants.
    Nuño N; Madrala A; Plamondon D
    J Biomech; 2008 Aug; 41(12):2605-11. PubMed ID: 18692188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevention of mesh-dependent damage growth in finite element simulations of crack formation in acrylic bone cement.
    Stolk J; Verdonschot N; Mann KA; Huiskes R
    J Biomech; 2003 Jun; 36(6):861-71. PubMed ID: 12742454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of bioactive PMMA-based bone cement under load-bearing conditions: an in vivo evaluation and FE simulation.
    Fottner A; Nies B; Kitanovic D; Steinbrück A; Mayer-Wagner S; Schröder C; Heinemann S; Pohl U; Jansson V
    J Mater Sci Mater Med; 2016 Sep; 27(9):138. PubMed ID: 27530301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of 2 modern femoral cementing techniques: analysis by cement-bone interface pressure measurements, computerized image analysis, and static mechanical testing.
    Reading AD; McCaskie AW; Barnes MR; Gregg PJ
    J Arthroplasty; 2000 Jun; 15(4):479-87. PubMed ID: 10884209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of vacuum mixing and pre-heating the femoral component on the mechanical properties of the cement mantle.
    Baleani M; Bialoblocka-Juszczyk E; Engels GE; Viceconti M
    J Bone Joint Surg Br; 2010 Mar; 92(3):454-60. PubMed ID: 20190321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thin cement mantles surrounding femoral hip implants might not be deleterious in all cases.
    Scheerlinck T; Janssen D; Verdonschot N
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):500-1; author reply 501-3. PubMed ID: 18207616
    [No Abstract]   [Full Text] [Related]  

  • 20. Influence of Charnley hip neck-angle inclination on the stresses at stem/cement and bone/cement interfaces.
    Zaki M; Saad F; Al-Ebiary MN
    Biomed Mater Eng; 2002; 12(4):411-21. PubMed ID: 12652035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.