These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 12742454)
21. Early cement damage around a femoral stem is concentrated at the cement/bone interface. Race A; Miller MA; Ayers DC; Mann KA J Biomech; 2003 Apr; 36(4):489-96. PubMed ID: 12600339 [TBL] [Abstract][Full Text] [Related]
22. Residual stress due to curing can initiate damage in porous bone cement: experimental and theoretical evidence. Lennon AB; Prendergast PJ J Biomech; 2002 Mar; 35(3):311-21. PubMed ID: 11858806 [TBL] [Abstract][Full Text] [Related]
23. The use of a constant load to generate equivalent viscoelastic strain in finite element analysis of cemented prosthetic joints subjected to cyclic loading. Lu Z; McKellop HA Proc Inst Mech Eng H; 2011 Aug; 225(8):809-20. PubMed ID: 21922957 [TBL] [Abstract][Full Text] [Related]
24. Cement mantle fatigue failure in total hip replacement: experimental and computational testing. Jeffers JR; Browne M; Lennon AB; Prendergast PJ; Taylor M J Biomech; 2007; 40(7):1525-33. PubMed ID: 17070816 [TBL] [Abstract][Full Text] [Related]
25. The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups--finite element simulations and experimental tests. Korhonen RK; Koistinen A; Konttinen YT; Santavirta SS; Lappalainen R Biomed Eng Online; 2005 May; 4():32. PubMed ID: 15904521 [TBL] [Abstract][Full Text] [Related]
26. Fatigue fracture of the stem-cement interface with a clamped cantilever beam test. Heuer DA; Mann KA J Biomech Eng; 2000 Dec; 122(6):647-51. PubMed ID: 11192387 [TBL] [Abstract][Full Text] [Related]
27. Quantitative measurement of the stresses induced during polymerisation of bone cement. Roques A; Browne M; Taylor A; New A; Baker D Biomaterials; 2004 Aug; 25(18):4415-24. PubMed ID: 15046932 [TBL] [Abstract][Full Text] [Related]
28. Application of circular statistics in the study of crack distribution around cemented femoral components. Mann KA; Gupta S; Race A; Miller MA; Cleary RJ J Biomech; 2003 Aug; 36(8):1231-4. PubMed ID: 12831752 [TBL] [Abstract][Full Text] [Related]
29. Effects of pre-cooling and pre-heating procedures on cement polymerisation and thermal osteonecrosis in cemented hip replacements [Medical Engineering & Physics 25 (2003) 559-64]. Talbot JC; Shaw DL Med Eng Phys; 2005 Jun; 27(5):439; author reply 441-2. PubMed ID: 15863352 [No Abstract] [Full Text] [Related]
30. Effect of curing characteristics on residual stress generation in polymethyl methacrylate bone cements. Hingston JA; Dunne NJ; Looney L; McGuinness GB Proc Inst Mech Eng H; 2008 Aug; 222(6):933-45. PubMed ID: 18935810 [TBL] [Abstract][Full Text] [Related]
31. Effects of interfacial crack and implant material on mixed-mode stress intensity factor and prediction of interface failure of cemented acetabular cup. Kumar A; Ghosh R; Kumar R J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):1844-1856. PubMed ID: 31769210 [TBL] [Abstract][Full Text] [Related]
32. A numerical study of failure mechanisms in the cemented resurfaced femur: effects of interface characteristics and bone remodelling. Pal B; Gupta S; New AM Proc Inst Mech Eng H; 2009 May; 223(4):471-84. PubMed ID: 19499837 [TBL] [Abstract][Full Text] [Related]
33. Fatigue crack growth rate does not depend on mantle thickness: an idealized cemented stem construct under torsional loading. Hertzler J; Miller MA; Mann KA J Orthop Res; 2002 Jul; 20(4):676-82. PubMed ID: 12168654 [TBL] [Abstract][Full Text] [Related]
34. Finite element thermal analysis of bone cement for joint replacements. Li C; Kotha S; Huang CH; Mason J; Yakimicki D; Hawkins M J Biomech Eng; 2003 Jun; 125(3):315-22. PubMed ID: 12929235 [TBL] [Abstract][Full Text] [Related]
35. Performance of bioactive PMMA-based bone cement under load-bearing conditions: an in vivo evaluation and FE simulation. Fottner A; Nies B; Kitanovic D; Steinbrück A; Mayer-Wagner S; Schröder C; Heinemann S; Pohl U; Jansson V J Mater Sci Mater Med; 2016 Sep; 27(9):138. PubMed ID: 27530301 [TBL] [Abstract][Full Text] [Related]
36. Surface pretreatment for prolonged survival of cemented tibial prosthesis components: full- vs. surface-cementation technique. Marx R; Qunaibi M; Wirtz DC; Niethard FU; Mumme T Biomed Eng Online; 2005 Oct; 4():61. PubMed ID: 16262888 [TBL] [Abstract][Full Text] [Related]
37. The effect of three-dimensional shape optimization on the probabilistic response of a cemented femoral hip prosthesis. Nicolella DP; Thacker BH; Katoozian H; Davy DT J Biomech; 2006; 39(7):1265-78. PubMed ID: 15961093 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of the effects of implant materials and designs on thermal necrosis of bone in cemented hip arthroplasty. Li C; Kotha S; Mason J Biomed Mater Eng; 2003; 13(4):419-28. PubMed ID: 14646056 [TBL] [Abstract][Full Text] [Related]
39. A comparative FEA of the debonding process in different concepts of cemented hip implants. Pérez MA; García-Aznar JM; Doblaré M; Seral B; Seral F Med Eng Phys; 2006 Jul; 28(6):525-33. PubMed ID: 16257253 [TBL] [Abstract][Full Text] [Related]
40. Comparative in vitro study on the long term performance of cemented hip stems: validation of a protocol to discriminate between "good" and "bad" designs. Cristofolini L; Teutonico AS; Monti L; Cappello A; Toni A J Biomech; 2003 Nov; 36(11):1603-15. PubMed ID: 14522201 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]