BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 12742733)

  • 1. Shrinkage stresses in bone cement.
    Orr JF; Dunne NJ; Quinn JC
    Biomaterials; 2003 Aug; 24(17):2933-40. PubMed ID: 12742733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative measurement of the stresses induced during polymerisation of bone cement.
    Roques A; Browne M; Taylor A; New A; Baker D
    Biomaterials; 2004 Aug; 25(18):4415-24. PubMed ID: 15046932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants.
    Nuño N; Madrala A; Plamondon D
    J Biomech; 2008 Aug; 41(12):2605-11. PubMed ID: 18692188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of stem insertion rate on the porosity of the cement mantle of hip joint replacements.
    Baleani M; Fognani R; Toni A
    Proc Inst Mech Eng H; 2003; 217(3):199-205. PubMed ID: 12807160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of curing history on residual stresses in bone cement during hip arthroplasty.
    Li C; Wang Y; Mason J
    J Biomed Mater Res B Appl Biomater; 2004 Jul; 70(1):30-6. PubMed ID: 15199580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual stress due to curing can initiate damage in porous bone cement: experimental and theoretical evidence.
    Lennon AB; Prendergast PJ
    J Biomech; 2002 Mar; 35(3):311-21. PubMed ID: 11858806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residual stresses at the stem-cement interface of an idealized cemented hip stem.
    Nuño N; Avanzolini G
    J Biomech; 2002 Jun; 35(6):849-52. PubMed ID: 12021006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of curing characteristics on residual stress generation in polymethyl methacrylate bone cements.
    Hingston JA; Dunne NJ; Looney L; McGuinness GB
    Proc Inst Mech Eng H; 2008 Aug; 222(6):933-45. PubMed ID: 18935810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of vacuum mixing and pre-heating the femoral component on the mechanical properties of the cement mantle.
    Baleani M; Bialoblocka-Juszczyk E; Engels GE; Viceconti M
    J Bone Joint Surg Br; 2010 Mar; 92(3):454-60. PubMed ID: 20190321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element thermal analysis of bone cement for joint replacements.
    Li C; Kotha S; Huang CH; Mason J; Yakimicki D; Hawkins M
    J Biomech Eng; 2003 Jun; 125(3):315-22. PubMed ID: 12929235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone-cement interface of the glenoid component: stress analysis for varying cement thickness.
    Terrier A; Büchler P; Farron A
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):710-7. PubMed ID: 15961203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevention of mesh-dependent damage growth in finite element simulations of crack formation in acrylic bone cement.
    Stolk J; Verdonschot N; Mann KA; Huiskes R
    J Biomech; 2003 Jun; 36(6):861-71. PubMed ID: 12742454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pre-cooling and pre-heating procedures on cement polymerization and thermal osteonecrosis in cemented hip replacements.
    Li C; Schmid S; Mason J
    Med Eng Phys; 2003 Sep; 25(7):559-64. PubMed ID: 12835068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdamage accumulation in the cement layer of hip replacements under flexural loading.
    McCormack BA; Prendergast PJ
    J Biomech; 1999 May; 32(5):467-75. PubMed ID: 10327000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modelling of bone cement polymerization: temperature and residual stresses.
    Pérez MA; Nuño N; Madrala A; García-Aznar JM; Doblaré M
    Comput Biol Med; 2009 Sep; 39(9):751-9. PubMed ID: 19615676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pre-cooling and pre-heating procedures on cement polymerisation and thermal osteonecrosis in cemented hip replacements [Medical Engineering & Physics 25 (2003) 559-64].
    Talbot JC; Shaw DL
    Med Eng Phys; 2005 Jun; 27(5):439; author reply 441-2. PubMed ID: 15863352
    [No Abstract]   [Full Text] [Related]  

  • 17. Influence of Charnley hip neck-angle inclination on the stresses at stem/cement and bone/cement interfaces.
    Zaki M; Saad F; Al-Ebiary MN
    Biomed Mater Eng; 2002; 12(4):411-21. PubMed ID: 12652035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the effects of implant materials and designs on thermal necrosis of bone in cemented hip arthroplasty.
    Li C; Kotha S; Mason J
    Biomed Mater Eng; 2003; 13(4):419-28. PubMed ID: 14646056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally induced strains and total shrinkage of the polymethyl-methacrylate cement in simplified models of total hip arthroplasty.
    Griza S; Ueki MM; Souza DH; Cervieri A; Strohaecker TR
    J Mech Behav Biomed Mater; 2013 Feb; 18():29-36. PubMed ID: 23237878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Timing of femoral prosthesis insertion during cemented arthroplasty: cement curing and static mechanical strength in an in vivo model.
    Hunt S; Stone C; Seal S
    Can J Surg; 2011 Feb; 54(1):33-8. PubMed ID: 21251430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.