These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12742829)

  • 41. Biphasic impairment of erythrocyte deformability in response to repeated, short duration exposures of supraphysiological, subhaemolytic shear stress.
    McNamee AP; Tansley GD; Sabapathy S; Simmonds MJ
    Biorheology; 2016 Nov; 53(3-4):137-149. PubMed ID: 27662271
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Repetitive Supra-Physiological Shear Stress Impairs Red Blood Cell Deformability and Induces Hemolysis.
    Horobin JT; Sabapathy S; Simmonds MJ
    Artif Organs; 2017 Nov; 41(11):1017-1025. PubMed ID: 28543744
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanical and geometrical properties of density-separated neonatal and adult erythrocytes.
    Linderkamp O; Friederichs E; Meiselman HJ
    Pediatr Res; 1993 Nov; 34(5):688-93. PubMed ID: 8284111
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Early hemorheological changes in a porcine model of intravenously given E. coli induced fulminant sepsis.
    Nemeth N; Berhes M; Kiss F; Hajdu E; Deak A; Molnar A; Szabo J; Fulesdi B
    Clin Hemorheol Microcirc; 2015; 61(3):479-96. PubMed ID: 25536919
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro exposure to hydroxyurea reduces sickle red blood cell deformability.
    Huang Z; Louderback JG; King SB; Ballas SK; Kim-Shapiro DB
    Am J Hematol; 2001 Jul; 67(3):151-6. PubMed ID: 11391710
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-Intensity Interval Training Improves Erythrocyte Osmotic Deformability.
    Huang YC; Hsu CC; Wang JS
    Med Sci Sports Exerc; 2019 Jul; 51(7):1404-1412. PubMed ID: 30768550
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Dynamics of hematologic parameters and of the erythrocyte deformability index at the juvenal period of rats and guinea pigs].
    Novozhilov AV; Katiukhin LN; Feĭzullaev BA
    Zh Evol Biokhim Fiziol; 2012; 48(1):29-37. PubMed ID: 22567973
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of temperature variation from 5 degrees C to 37 degrees C on aggregation and deformability of erythrocytes.
    Singh M; Stoltz JF
    Clin Hemorheol Microcirc; 2002; 26(1):1-7. PubMed ID: 11904465
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rheological red blood cell behaviour in minor α-thalassaemia carriers.
    Vayá A; Suescun M; Hernández JL; Pérez ML; Palanca S; Laiz B
    Clin Hemorheol Microcirc; 2011; 48(4):241-6. PubMed ID: 22012829
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Red blood cell distribution width and erythrocyte deformability in patients with acute myocardial infarction.
    Vayá A; Rivera L; de la Espriella R; Sanchez F; Suescun M; Hernandez JL; Fácila L
    Clin Hemorheol Microcirc; 2015; 59(2):107-14. PubMed ID: 23752170
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Red blood cell aggregation in experimental sepsis.
    Baskurt OK; Temiz A; Meiselman HJ
    J Lab Clin Med; 1997 Aug; 130(2):183-90. PubMed ID: 9280145
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of lipopolysaccharide on changes in red blood cells in a mice endotoxemia model.
    Myung J; Park SJ; Lim J; Kim YH; Shin S; Lim CH
    Clin Hemorheol Microcirc; 2016 Oct; 63(4):305-312. PubMed ID: 26484719
    [TBL] [Abstract][Full Text] [Related]  

  • 53. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease.
    Barodka VM; Nagababu E; Mohanty JG; Nyhan D; Berkowitz DE; Rifkind JM; Strouse JJ
    Blood Cells Mol Dis; 2014 Apr; 52(4):230-5. PubMed ID: 24246527
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of Whole-Body Electrostimulation on Human Red Blood Cell Deformability.
    Filipovic A; Kleinöder H; Plück D; Hollmann W; Bloch W; Grau M
    J Strength Cond Res; 2015 Sep; 29(9):2570-8. PubMed ID: 26308832
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Shear stress-induced improvement of red blood cell deformability.
    Meram E; Yilmaz BD; Bas C; Atac N; Yalcin O; Meiselman HJ; Baskurt OK
    Biorheology; 2013; 50(3-4):165-76. PubMed ID: 23863281
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measuring Deformability and Red Cell Heterogeneity in Blood by Ektacytometry.
    Parrow NL; Violet PC; Tu H; Nichols J; Pittman CA; Fitzhugh C; Fleming RE; Mohandas N; Tisdale JF; Levine M
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364234
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Red blood cell deformability in human and experimental sepsis.
    Hurd TC; Dasmahapatra KS; Rush BF; Machiedo GW
    Arch Surg; 1988 Feb; 123(2):217-20. PubMed ID: 3277585
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of Type of Sport, Gender and Age on Red Blood Cell Deformability of Elite Athletes.
    Tomschi F; Bloch W; Grau M
    Int J Sports Med; 2018 Jan; 39(1):12-20. PubMed ID: 29165733
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of 2,3-diphosphoglycerate on the deformability of human erythrocytes.
    Suzuki Y; Nakajima T; Shiga T; Maeda N
    Biochim Biophys Acta; 1990 Nov; 1029(1):85-90. PubMed ID: 2223815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Validation and application of a microfluidic ektacytometer (RheoScan-D) in measuring erythrocyte deformability.
    Shin S; Hou JX; Suh JS; Singh M
    Clin Hemorheol Microcirc; 2007; 37(4):319-28. PubMed ID: 17942984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.