These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 12743100)

  • 1. Modeling network dynamics: the lac operon, a case study.
    Vilar JM; Guet CC; Leibler S
    J Cell Biol; 2003 May; 161(3):471-6. PubMed ID: 12743100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive evolution of the lactose utilization network in experimentally evolved populations of Escherichia coli.
    Quan S; Ray JC; Kwota Z; Duong T; Balázsi G; Cooper TF; Monds RD
    PLoS Genet; 2012 Jan; 8(1):e1002444. PubMed ID: 22253602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics and bistability in a reduced model of the lac operon.
    Yildirim N; Santillan M; Horike D; Mackey MC
    Chaos; 2004 Jun; 14(2):279-92. PubMed ID: 15189056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bistability and Nonmonotonic Induction of the lac Operon in the Natural Lactose Uptake System.
    Zander D; Samaga D; Straube R; Bettenbrock K
    Biophys J; 2017 May; 112(9):1984-1996. PubMed ID: 28494968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of gene circuitry by natural selection: analysis of the lactose catabolic system in Escherichia coli.
    Savageau MA
    Biochem Soc Trans; 1999 Feb; 27(2):264-70. PubMed ID: 10093745
    [No Abstract]   [Full Text] [Related]  

  • 6. Analysis of lactose metabolism in E. Coli using reachability analysis of hybrid systems.
    Halász A; Kumar V; Imieliński M; Belta C; Sokolsky O; Pathak S; Rubin H
    IET Syst Biol; 2007 Mar; 1(2):130-48. PubMed ID: 17441554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistability in the lactose utilization network of Escherichia coli.
    Ozbudak EM; Thattai M; Lim HN; Shraiman BI; Van Oudenaarden A
    Nature; 2004 Feb; 427(6976):737-40. PubMed ID: 14973486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PROKARYO: an illustrative and interactive computational model of the lactose operon in the bacterium Escherichia coli.
    Esmaeili A; Davison T; Wu A; Alcantara J; Jacob C
    BMC Bioinformatics; 2015 Sep; 16():311. PubMed ID: 26415599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico evolved lac operons exhibit bistability for artificial inducers, but not for lactose.
    van Hoek MJ; Hogeweg P
    Biophys J; 2006 Oct; 91(8):2833-43. PubMed ID: 16877514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimality and evolutionary tuning of the expression level of a protein.
    Dekel E; Alon U
    Nature; 2005 Jul; 436(7050):588-92. PubMed ID: 16049495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarity effects in the lactose operon of Escherichia coli.
    Li Y; Altman S
    J Mol Biol; 2004 May; 339(1):31-9. PubMed ID: 15123418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of bistability in induction of the Escherichia coli lac operon.
    Dreisigmeyer DW; Stajic J; Nemenman I; Hlavacek WS; Wall ME
    IET Syst Biol; 2008 Sep; 2(5):293-303. PubMed ID: 19045824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bistability of the lac operon during growth of Escherichia coli on lactose and lactose+glucose.
    Narang A; Pilyugin SS
    Bull Math Biol; 2008 May; 70(4):1032-64. PubMed ID: 18246403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data.
    Yildirim N; Mackey MC
    Biophys J; 2003 May; 84(5):2841-51. PubMed ID: 12719218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.
    Wong P; Gladney S; Keasling JD
    Biotechnol Prog; 1997; 13(2):132-43. PubMed ID: 9104037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boolean models can explain bistability in the lac operon.
    Veliz-Cuba A; Stigler B
    J Comput Biol; 2011 Jun; 18(6):783-94. PubMed ID: 21563979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel escherichia coli strain allows efficient recombinant protein production using lactose as inducer.
    Menzella HG; Ceccarelli EA; Gramajo HC
    Biotechnol Bioeng; 2003 Jun; 82(7):809-17. PubMed ID: 12701147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Gene Expression: Lac operon.
    Velazco S; Kambo D; Yu K; Saha A; Beckman E; Mysore N; Cauwenberghs G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1086-1091. PubMed ID: 34891476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the asymmetric response of a genetic switch to noise.
    Ochab-Marcinek A
    J Theor Biol; 2008 Sep; 254(1):37-44. PubMed ID: 18554612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bistability and Asynchrony in a Boolean Model of the L-arabinose Operon in Escherichia coli.
    Jenkins A; Macauley M
    Bull Math Biol; 2017 Aug; 79(8):1778-1795. PubMed ID: 28639170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.