These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 12743730)

  • 1. Modeling of time disparity detection by the Hodgkin-Huxley equations.
    Takagi H; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Apr; 189(4):257-62. PubMed ID: 12743730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation of accurate temporal information in the electrosensory system of the African electric fish, Gymnarchus niloticus.
    Guo YX; Kawasaki M
    J Neurosci; 1997 Mar; 17(5):1761-8. PubMed ID: 9030634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal sensitivity to microsecond time disparities in the electrosensory system of Gymnarchus niloticus.
    Matsushita A; Kawasaki M
    J Neurosci; 2005 Dec; 25(49):11424-32. PubMed ID: 16339036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The African wave-type electric fish, Gymnarchus niloticus, lacks corollary discharge mechanisms for electrosensory gating.
    Kawasaki M
    J Comp Physiol A; 1994 Feb; 174(2):133-44. PubMed ID: 8145186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role of burst firings in encoding of spatiotemporally-varying stimulus.
    Fujita K; Kashimori Y; Zheng M; Kambara T
    Biosystems; 2004; 76(1-3):21-31. PubMed ID: 15351127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish.
    Heiligenberg W
    Brain Behav Evol; 1988; 31(1):6-16. PubMed ID: 3334906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal circuitry for comparison of timing in the electrosensory lateral line lobe of the African wave-type electric fish Gymnarchus niloticus.
    Kawasaki M; Guo YX
    J Neurosci; 1996 Jan; 16(1):380-91. PubMed ID: 8613805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of neurons in the electrosensory lateral line lobe of the weakly electric fish Gnathonemus petersii to simple and complex electrosensory stimuli.
    Goenechea L; von der Emde G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Nov; 190(11):907-22. PubMed ID: 15349745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo.
    Castelló ME; Caputi A; Trujillo-Cenóz O
    J Comp Neurol; 1998 Nov; 401(4):549-63. PubMed ID: 9826277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli.
    Aumentado-Armstrong T; Metzen MG; Sproule MK; Chacron MJ
    PLoS Comput Biol; 2015 Oct; 11(10):e1004430. PubMed ID: 26474395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling inhibitory plasticity in the electrosensory system of mormyrid electric fish.
    Roberts PD
    J Neurophysiol; 2000 Oct; 84(4):2035-47. PubMed ID: 11024096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring direction in the coupling of biological oscillators: a case study for electroreceptors of paddlefish.
    Brea J; Russell DF; Neiman AB
    Chaos; 2006 Jun; 16(2):026111. PubMed ID: 16822043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encoding and processing biologically relevant temporal information in electrosensory systems.
    Fortune ES; Rose GJ; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):625-35. PubMed ID: 16450118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Granular cells of the mormyrid electrosensory lobe and postsynaptic control over presynaptic spike occurrence and amplitude through an electrical synapse.
    Zhang J; Han VZ; Meek J; Bell CC
    J Neurophysiol; 2007 Mar; 97(3):2191-203. PubMed ID: 17229820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of the jamming avoidance response in African and South American wave-type electric fishes.
    Kawasaki M
    Biol Bull; 1996 Aug; 191(1):103-8. PubMed ID: 8776846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independently evolved jamming avoidance responses employ identical computational algorithms: a behavioral study of the African electric fish, Gymnarchus niloticus.
    Kawasaki M
    J Comp Physiol A; 1993 Jul; 173(1):9-22. PubMed ID: 8366474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear dynamics of skin potentials in the electrosensory paddlefish.
    Hofmann MH; Wilkens LA
    Chaos; 2011 Dec; 21(4):047504. PubMed ID: 22225378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Descending control of electroreception. I. Properties of nucleus praeeminentialis neurons projecting indirectly to the electrosensory lateral line lobe.
    Bastian J; Bratton B
    J Neurosci; 1990 Apr; 10(4):1226-40. PubMed ID: 2158527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coding of time-varying electric field amplitude modulations in a wave-type electric fish.
    Wessel R; Koch C; Gabbiani F
    J Neurophysiol; 1996 Jun; 75(6):2280-93. PubMed ID: 8793741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal burst coding for extracting features of spatiotemporally varying stimuli.
    Fujita K; Kashimori Y; Kambara T
    Biol Cybern; 2007 Oct; 97(4):293-305. PubMed ID: 17805559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.