BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 12743753)

  • 41. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence.
    Tateno T; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):533-41. PubMed ID: 17891388
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032.
    Rey DA; Nentwich SS; Koch DJ; Rückert C; Pühler A; Tauch A; Kalinowski J
    Mol Microbiol; 2005 May; 56(4):871-87. PubMed ID: 15853877
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Large-scale engineering of the Corynebacterium glutamicum genome.
    Suzuki N; Okayama S; Nonaka H; Tsuge Y; Inui M; Yukawa H
    Appl Environ Microbiol; 2005 Jun; 71(6):3369-72. PubMed ID: 15933044
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Where are we in genomics?
    Hocquette JF
    J Physiol Pharmacol; 2005 Jun; 56 Suppl 3():37-70. PubMed ID: 16077195
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum.
    Engels S; Ludwig C; Schweitzer JE; Mack C; Bott M; Schaffer S
    Mol Microbiol; 2005 Jul; 57(2):576-91. PubMed ID: 15978086
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Cloning and sequence analysis of aspartokinase genes from Corynebacterium crenatum].
    Liu Y; Zhang Y; Wang J; Wang Y; Yu Z; Ding J
    Wei Sheng Wu Xue Bao; 2002 Aug; 42(4):395-9. PubMed ID: 12557542
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum.
    Wittmann C
    Adv Biochem Eng Biotechnol; 2010; 120():21-49. PubMed ID: 20140657
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome sequence of the lytic bacteriophage P1201 from Corynebacterium glutamicum NCHU 87078: evolutionary relationships to phages from Corynebacterineae.
    Chen CL; Pan TY; Kan SC; Kuan YC; Hong LY; Chiu KR; Sheu CS; Yang JS; Hsu WH; Hu HY
    Virology; 2008 Sep; 378(2):226-32. PubMed ID: 18599103
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Francisella tularensis genomics and proteomics.
    Titball RW; Petrosino JF
    Ann N Y Acad Sci; 2007 Jun; 1105():98-121. PubMed ID: 17435122
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmids in Corynebacterium glutamicum and their molecular classification by comparative genomics.
    Tauch A; Pühler A; Kalinowski J; Thierbach G
    J Biotechnol; 2003 Sep; 104(1-3):27-40. PubMed ID: 12948627
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of global analysis techniques to Corynebacterium glutamicum: new insights into nitrogen regulation.
    Silberbach M; Burkovski A
    J Biotechnol; 2006 Oct; 126(1):101-10. PubMed ID: 16698104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative and functional genomics of lactococci.
    Kok J; Buist G; Zomer AL; van Hijum SA; Kuipers OP
    FEMS Microbiol Rev; 2005 Aug; 29(3):411-33. PubMed ID: 15936843
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Systems biology for industrial strains and fermentation processes--example: amino acids.
    Takors R; Bathe B; Rieping M; Hans S; Kelle R; Huthmacher K
    J Biotechnol; 2007 Apr; 129(2):181-90. PubMed ID: 17367886
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora.
    Tauch A; Kaiser O; Hain T; Goesmann A; Weisshaar B; Albersmeier A; Bekel T; Bischoff N; Brune I; Chakraborty T; Kalinowski J; Meyer F; Rupp O; Schneiker S; Viehoever P; Pühler A
    J Bacteriol; 2005 Jul; 187(13):4671-82. PubMed ID: 15968079
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.
    Veit A; Rittmann D; Georgi T; Youn JW; Eikmanns BJ; Wendisch VF
    J Biotechnol; 2009 Mar; 140(1-2):75-83. PubMed ID: 19162097
    [TBL] [Abstract][Full Text] [Related]  

  • 56. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH.
    Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S
    Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Phage resistance of Corynebacterium crenatum conferred by the restriction and modification system cglI].
    Hu Y; Li T; Yang Z; Zhang B; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2008 May; 24(5):760-5. PubMed ID: 18724694
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biotechnology and vaccines: application of functional genomics to Neisseria meningitidis and other bacterial pathogens.
    Serruto D; Adu-Bobie J; Capecchi B; Rappuoli R; Pizza M; Masignani V
    J Biotechnol; 2004 Sep; 113(1-3):15-32. PubMed ID: 15380644
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic engineering of Corynebacterium glutamicum.
    Jetten MS; Follettie MT; Sinskey AJ
    Ann N Y Acad Sci; 1994 May; 721():12-29. PubMed ID: 8010662
    [No Abstract]   [Full Text] [Related]  

  • 60. Genome sequence of Corynebacterium glutamicum ATCC 14067, which provides insight into amino acid biosynthesis in coryneform bacteria.
    Lv Y; Liao J; Wu Z; Han S; Lin Y; Zheng S
    J Bacteriol; 2012 Feb; 194(3):742-3. PubMed ID: 22247536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.